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THE RAMSEY PROPERTY FOR OPERATOR SPACES AND

NONCOMMUTATIVE CHOQUET SIMPLICES

DANA BARTOŠOVÁ, JORDI LÓPEZ-ABAD, MARTINO LUPINI, AND B. MBOMBO

Abstract. The noncommutative Gurarij space NG, initially defined by Oikhberg, is a canonical object

in the theory of operator spaces. As the Fräıssé limit of the class of finite-dimensional nuclear operator

spaces, it can be seen as the noncommutative analogue of the classical Gurarij Banach space. In this

paper, we prove that the automorphism group of NG is extremely amenable, i.e. any of its actions on

compact spaces has a fixed point. The proof relies on the Dual Ramsey Theorem, and a version of the

Kechris–Pestov–Todorcevic correspondence in the setting of operator spaces.

Recent work of Davidson and Kennedy, building on previous work of Arveson, Effros, Farenick,

Webster, and Winkler, among others, shows that nuclear operator systems can be seen as the non-

commutative analogue of Choquet simplices. The analogue of the Poulsen simplex in this context is

the matrix state space NP of the Fräıssé limit ApNPq of the class of finite-dimensional nuclear operator

systems. We show that the canonical action of the automorphism group of NP on the compact set

NP1 of unital linear functionals on ApNPq is minimal and it factors onto any minimal action, whence

providing a description of the universal minimal flow of AutpNPq.

1. Introduction

Dynamics studies, generally speaking, actions of groups on spaces. When the group G under

consideration is topological, it is natural to restrict to actions that are continuous. While a classification

of arbitrary continuous actions is hopeless, one can hope for a good structure theory after restricting

to continuous actions on compact spaces, also called flows or G-flows. In this case, by Zorn’s lemma

one can conclude that every flow admits a subflow that is furthermore minimal (with respect to

inclusion). Thus, in some sense flows that are minimal (i.e. have no nontrivial subflows) can be

regarded as building blocks of more general flows. Within the class of minimal flows there is a unique

one that is largest or universal, in the sense that it factors onto any minimal flow [15, 26]. Such a

universal minimal G-flow MpGq is thus a canonical object in the study of the dynamics of G, as it

encodes fundamental properties of the class of all G-flows. For instance, MpGq being reduced to a

single point, in which case the group G is called extremely amenable, is equivalent to the assertion
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that every G-flow has a fixed point. More generally, obtaining a concrete description of MpGq entails

at least in principle a classification of all minimal G-flows, which are precisely the factors of MpGq.

This is especially interesting when MpGq turns out to be “small” or, specifically, metrizable, in which

case any minimal G-flow is metrizable as well.

While MpGq is never metrizable when G is locally compact and not compact, breakthroughs due

to Pestov [49–51] culminating in the work of Kechris, Pestov, and Todorcevic [30] provided several

examples of “large” topological groups for which MpGq is metrizable, or even trivial. These groups

arise as automorphism groups of mathematical structures satisfying a strong homogeneity property

called ultrahomogeneity. Examples of such structures are the linear order of the rationals pQ,ăq, the

Urysohn metric space U, the infinite random graph R, and the countable atomless Boolean algebra

B. If G denotes the automorphism group of one of these examples, then MpGq is trivial in the case of

the rationals and the Urysohn space, and it is equal to the space of all linear orderings on R or to the

space of natural linear orderings on B, in the case of the infinite Random graphs and the countable

atomless Boolean algebra, respectively.

In the case of the automorphism group G of a ultrahomogeneous structure X, the Kechris–Pestov–

Todorcevic (KPT) correspondence from [30], later extended by Van The [45], provides a way to

compute MpGq by studying the age of X, which is the collection of all the “small” (finitely-generated)

substructures of X. For instance, in the case of the linear order of the rationals, of the Urysohn

space, and the infinite random graph, the age is the class of all the finite linear orders, all finite

metric spaces, and all finite graphs, respectively. Precisely, the KPT correspondence characterizes

extreme amenability of G in terms of a strong combinatorial property of the age of X, called the

Ramsey property, the name being due to the fact that in the case of finite linear orders it can be

seen as a reformulation the finite Ramsey theorem. This provides a combinatorial way to establish

extreme amenability of G or to compute MpGq after finding a suitable extremely amenable “large”

subgroup. (A different approach, using the method of concentration of measure, was pioneered by

Gromov ad Milman [23], who employed it to prove that the group of unitary operators on the Hilbert

space endowed with the strong operator topology is extremely amenable.)

Until recently, virtually all examples of application of the KPT correspondence consisted of discrete

structures arising in algebra and combinatorics. This has changed in recent years, where the scope of

the KPT correspondence has been extended to “continuous” structures from geometry and functional

analysis. One can place in this context the main results of [3], where the Gurarij space and the Poulsen

simplex are studied. The Gurarij space is a classical Banach space constructed by Gurarij [25] that

can be characterized as the only approximately ultrahomogeneous separable Banach space whose age

consists of all the finite-dimensional Banach spaces [4, 32]. It is proved in [3] that the group Aut pGq

of automorphisms of G is extremely amenable. Besides the KPT correspondence, the proof relies on

an analysis of the structure of isometric embedding between finite-dimensional Banach spaces of the

form ℓn8. Such embeddings are described in terms of rigid surjections between finite ordered sets. This

makes it possible to apply the Dual Ramsey Theorem [22] to, ultimately, establish the (approximate)

Ramsey property for the class of finite-dimensional Banach spaces.

A similar technique is employed in [3] to determined the universal minimal flow of the group Aut pPq

of affine homeomorphisms of the Poulsen simplex [55]. The Poulsen simplex P is the unique Choquet

simplex with the remarkable property that its boundary BP is dense within the simplex P itself—in

stark contrast with what happens for the more common Bauer simplices, which have closed boundary.
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One can describe P in terms of homogeneous structures by means of the Kadison correspondence

[1], which assigns to a Choquet simplex K the function system A pKq of continuous affine scalar-

valued functions on K. This establishes an equivalence of categories between compact convex sets

and function systems, where Choquet simplices correspond to nuclear function systems. The function

system A pPq corresponding to the Poulsen simplex is the only (nuclear) function system whose age

is the class of all the finite-dimensional function systems. Relying on this correspondence, as well as

the KPT correspondence and the Dual Ramsey Theorem, it is proved in [3] that P itself, regarded

as an Aut pPq-flow with the canonical action of Aut pPq, is universal (and minimal), whence it is the

universal minimal Aut pPq-flow.

In this paper these results are extended to the noncommutative analogues of these objects, which

can be constructed in the setting of operator spaces and operator systems. An operator space X is a

complex vector space endowed with a norm on K pHq b X, where B pHq is the algebra of operators

on the separable infinite-dimensional Hilbert space H, and K pHq Ď B pHq is the algebra of compact

operators. Concretely, separable operator spaces can be thought of as closed subspaces X of a C*-

algebra or, equivalently, of B pHq, endowed with the norm induced by the inclusion K pHq b X Ď

B pHq b B pHq Ď B pH bHq. Every Banach space can be regarded as an operator space, and the

operator spaces that arise in this fashion are precisely those that can be realized as subspaces of

commutative C*-algebras. The theory of operator spaces can be thought of as a noncommutative

generalization of the theory of Banach spaces, and it has applications in the study of C*-algebras and

quantum information theory [47].

In much the same way, function systems admit operator systems as noncommutative analogues. An

operator system is an operator space that can be realized as a closed subspace B pHq that is unital, in

the sense that it contains the identity operator—the unit. (Naturally, in this context morphisms are

also required to be unital, namely to map the unit to the unit.) Choquet simplices in turn correspond

to the operator systems that are nuclear, which is an approximation property akin to amenability of

groups or Banach algebras. In this context, the Kadison correspondence between function systems

and compact convex sets can be generalized to a correspondence between compact matrix convex

sets and operator systems, which we recall in Section 4.1. Operator systems can thus be thought of

as noncommutative analogues of compact convex sets, and noncommutative Choquet theory in this

context has been recently developed in [9] building on [11, 12, 14, 16, 17, 58]. Operator systems also

arise in the study of operator algebras, nonlocal games, and free real algebraic geometry [27, 28].

The noncommutative Gurarij space NG was constructed by Oikhberg [46] and can be characterized

as the only (approximately) ultrahomogeneous separable nuclear operator space whose age contains

all the operator spaces that can be realized as a subspace of a finite-dimensional C*-algebra [36]. In

this paper, we prove that, as in the commutative case, the group Aut pNGq of automorphisms of NG

is extremely amenable.

The noncommutative Poulsen simplex NP is a noncommutative Choquet simplex (compact matrix

convex set) whose corresponding operator system A pNPq of matrix-valued continuous affine functions

is the unique separable nuclear operator system whose age contains all the operator systems that

can be realized as unital subspaces of a finite-dimensional C*-algebra [37]. One can also characterize

A pNPq as the unique separable nuclear operator system that is universal in the sense of Kirchberg and

Wassermann [31, 38]. This property can be though of as a noncommutative analogue of having dense

extreme boundary. It is also true that the matrix extreme points of NP are dense in NP, although it is
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unknown if this property characterizes NP among the metrizable noncommutative Choquet simplices.

Due to the canonical role that P plays within the class of Choquet simplices (as, for instance, it contains

any metrizable Choquet simplex as a proper face), it is natural to expect that NP will be an example

of fundamental importance for noncommutative Choquet theory [9]. We prove in this paper that the

compact space NP1 of 1-dimensional points of NP—which are precisely the unital linear functionals on

A pNPq—endowed with the canonical action of the group Aut pNPq of matrix-affine homeomorphisms

of NP, is the universal minimal Aut pNPq-flow. This is the natural noncommutative analogue of the

corresponding result for P from [3].

The paper is organized as follows. In Section 2 we review some fundamental notions concerning

operator spaces and operator systems. We also define the notion of Fräıssé classes, Fräıssé limits, and

the KPT correspondence restricted to this specific context. In Section 3, we introduce several nuclear

operator spaces as Fräıssé limits of classes of finite dimensional injective operator spaces, and then

in Section 3.2 we establish the (approximate) Ramsey property for each of these classes, obtaining

a proof of extreme amenability of Aut pNGq. In Section 4, we consider the more general case of

structures consisting of an operator space with a distinguished morphism to another (fixed) operator

space R. Finally, in Section 4 we consider noncommutative Choquet simplices, operator systems,

operator systems with distinguished state, and we compute the universal minimal flow of Aut pNPq.

Acknowledgments. We are grateful to Itäı, Ben Yaacov, Clinton Conley, Valentin Ferenczi, Alexander

Kechris, Matt Kennedy, Julien Melleray, Lionel Nguyen Van Thé, Vladimir Pestov, Slawomir Solecki,

Stevo Todorcevic, and Todor Tsankov for several helpful conversations and remarks.

2. Fräıssé classes and the Ramsey property of operator spaces and systems

2.1. Operator spaces and operator systems. We now recall some fundamental notions and results

from the theory of operator spaces. The monographs [6, 13, 54] provide good introductions to this

subject. An operator space E is a closed linear subspace of the space BpHq of bounded linear operators

on some complex Hilbert space H. The inclusion E Ă BpHq induces matrix norms on each MnpEq,

n P N, the space of nˆn matrices with entries in E. The norm of an element rxijs of MnpEq is defined

as the operator norm of rxijs when regarded in the canonical way as an linear operator on the n-fold

Hilbertian direct sum of H by itself. The 8-sum of two operator spaces E Ă BpH0q and F Ă BpH1q

is the space E ‘8 F Ă BpH0 ‘H1q of operators of the form

«
x 0

0 y

ff

for x P E and y P F . One can equivalently define operator spaces as the closed subspaces of unital

C*-algebras. A unital C*-algebra is a closed subalgebra of BpHq containing the identity operator

and closed under taking adjoints. Unital C*-algebras can be abstractly characterized as the complex

Banach algebras with multiplicative identity and involution satisfying the C*-identity }a˚a} “ }a}2.

Operator spaces also admit an abstract characterization, in terms of Ruan’s axioms for the matrix

norms [48, Theorem 13.4]. Precisely, a matrix normed complex vector space X is an operator space if

and only if the matrix norms satisfy the identity

}α˚
1x1β1 ` ¨ ¨ ¨ ` α˚

ℓ xℓβℓ} ď }α˚
1α1 ` ¨ ¨ ¨ ` α˚

ℓαℓ} max t}x1} , . . . , }xℓ}u }β˚
1β1 ` ¨ ¨ ¨ ` β˚

ℓ βℓ}
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for n1, . . . , nℓ, n P N, xi P Mni
pXq, and αi, βi P Mni,n pCq. In this identity, one consider the natural

notion of matrix multiplication between matrices over X and scalar matrices. The norm of scalar

matrices is the operator norm, where matrices are regarded as operators on finite-dimensional Hilbert

spaces.

The abstract characterization of C*-algebras shows that, whenever K is a compact Hausdorff space,

CpKq with the pointwise operations and the supremum norm is a unital C*-algebra. The unital C*-

algebras of this form are precisely the abelian ones. Any complex Banach space E has a canonical

operator space structure, obtained by representing E isometrically as a subspace of CpBallpE˚qq, where

the unit ball BallpE˚q of E˚ is endowed with the weak*-topology. This operator space structure on E

is called its minimal quantization [13] and the corresponding operator space is denoted by MINpEq.

The matrix norms on MINpEq are defined by }rxijs} “ supφPBallpE˚q }rφpxijqs} for rxijs P MnpEq. The

operator spaces that arise in this fashion are called minimal operator spaces. These are precisely the

operator spaces that can be represented inside an abelian unital C*-algebra. Arbitrary operator spaces

can be thought of as the noncommutative analog of Banach spaces.

If φ : E Ñ F is a linear map between operator spaces, then one can consider its amplifications

φpnq : MnpEq Ñ MnpF q obtained by applying φ entrywise. The completely bounded norm }φ}cb of

φ is the supremum of
››φpnq

›› for n P N. A linear map φ is completely bounded if }φ}cb is finite, and

completely contractive if }φ}cb is at most 1. The cb-distance between two completely bounded linear

maps φ,ψ : E Ñ F is defined by dcb pφ,ψq :“ }φ ´ ψ}cb. From now on, we regard the space of

completely bounded maps from E to F , and all its subspaces, as a metric space endowed with the

cb-distance dcb.

We regard operator spaces as the objects of a category having completely contractive linear maps

as morphisms. An isomorphism in this category is a surjective linear complete isometry, which is an

invertible completely contractive linear map with completely contractive inverse. If E is an operator

space, then its automorphism group AutpEq is the group of surjective linear complete isometries from

E to itself. When E is separable, this is a Polish group when endowed with the topology of pointwise

convergence. The dual operator space of an operator space E is a canonical operator space structure

on the space E˚ of (completely) bounded linear functionals on E, obtained by identifying completely

isometrically MnpE˚q with the space of completely bounded linear maps from E to MnpCq; see [13,

§3.2].

When E,F are Banach spaces, and φ : E Ñ F is a linear map, then φ is bounded if and only if

it is completely bounded when E and F are endowed with their minimal operator space structure.

Furthermore, in this case one has the equality of norms }φ : E Ñ F } “ }φ : MINpEq Ñ MINpF q}cb.

Thus the category of Banach spaces and contractive linear maps can be seen as a full subcategory of

the category of operator spaces and completely contractive linear maps. In particular, the group of

surjective linear isometries of a Banach space E can be identified with the group of surjective linear

complete isometries of MINpEq. We will identify a Banach space E with the corresponding minimal

operator space MINpEq.

There is a natural class of geometric objects that correspond to operator spaces, generalizing the

correspondence between Banach spaces and compact absolutely convex sets. A compact rectangular

matrix convex set in a topological vector space V is a sequence pKn,mq of compact convex subsets of

Mn,mpV q, the nˆm-matrices over V , endowed with a notion of rectangular convex combination. This

is an expression α˚
1p1β1 ` ¨ ¨ ¨ ` α˚

ℓ pℓβℓ for pi P Kni,mi
, αi P Mni,npCq, and βi P Mmi,mpCq satisfying
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}α˚
1α1 ` ¨ ¨ ¨ ` α˚

ℓαℓ} ď 1 and }β˚
1β1 ` ¨ ¨ ¨ ` β˚

ℓ βℓ} ď 1. The notion of an affine map and extreme

points admit natural rectangular matrix analogs, where usual convex combinations are replaced with

rectangular matrix convex combinations. When E is an operator space, let CBallpE˚q be the sequence

pKn,mq, where each Kn,m is the unit ball of Mn,mpE˚q. It is proved in [19] that any compact rect-

angular matrix convex set arises in this way. Furthermore the correspondence E ÞÑ CBallpE˚q is a

contravariant equivalence of categories from the category of operator spaces and completely contrac-

tive maps to the category of compact rectangular matrix convex sets and continuous rectangular affine

maps.

An operator system is a closed linear subspace X of the algebra BpHq for some Hilbert space H that

is unital and self-adjoint, i.e. contains the identity operator and is closed under taking adjoints. In

particular, the space MnpCq has a natural operator system structure, obtained by identifying MnpCq

with Bpℓn2 q. An operator system X inherits from the inclusion X Ă BpHq an involution x ÞÑ x˚,

which corresponds to taking adjoints, and a distinguished element 1 (the unit), which corresponds to

the identity operator. Furthermore, for every n P N, MnpXq has a canonical norm and a notion of

positivity, obtained by setting rxijs ě 0 if and only if rxijs is positive when regarded as an operator on

the n-fold Hilbertian sum of H by itself. The self-adjoint part Xsa of X is the unital subspace of X

containing those x P X such that x “ x˚. A linear map φ : X Ñ Y between operator systems is unital

if it maps the unit of X to the unit of Y , positive if it maps positive elements to positive elements, and

completely positive if every amplification φpnq is positive. We abbreviate “unital completely positive

linear map” as “ucp map”. It is well known that a unital linear map φ between operator systems is

completely positive if and only if it is completely contractive. A unital complete isometry φ : X Ñ Y

is called a complete order embedding. A surjective complete order embedding is a complete order

isomorphism. One can abstractly characterize the pairs pX, 1q, where X is an operator space and

1 P X, that are operator systems, in the sense that there exists a complete isometry φ : X Ñ BpHq

mapping 1 to the identity operator and X onto a closed self-adjoint subspace of BpHq [7]. An earlier

abstract characterization of operator systems in terms of the matrix positive cones is due to Choi and

Effros [8].

2.2. Fräıssé classes and Fräıssé limits. We recall in this section Fräıssé classes and Fräıssé limits

in the setting of operator spaces and operator systems. These can be seen as particular instances of

Fräıssé classes and Fräıssé limits of metric structures in the sense of [5, 44]. In order to make this

paper more self-contained, we will introduce all these notions in this particular case.

Let Osp be the class of operator spaces. Given X,Y P Osp and δ ě 0, let Emb
Osp

δ pX,Y q be the

space of δ-embeddings form X into Y , that is, injective complete contractions φ : X Ñ Y such that

}φ´1}cb ď 1 ` δ. In this terminology, the complete isometries are precisely the 0-embeddings, which

we will simply call embeddings. Let AutOsppXq be the group of surjective embeddings from X to itself.

One can deduce from the small perturbation lemma in operator space theory [54, Lemma 2.13.2] that

Emb
Osp

δ pX,Y q is a compact metric space whenever X,Y are finite-dimensional objects of Osp. When

δ “ 0, we will write EmbOsppX,Y q instead of Emb
Osp

0 pX,Y q. The members of EmbOsppX,Y q are

called Osp-embeddings from X into Y . We also have that, when X is separable, AutOsppXq is a Polish

group when endowed with the topology of pointwise convergence. Whenever there is no possibility of

confusion we will use EmbδpX,Y q and AutpXq instead of Emb
Osp

δ pX,Y q and AutOsppXq, respectively.

Given an operator space R, by an R-operator space we mean a pair X “ pX, sXq, where X is an

operator space and sX : X Ñ R is a complete contraction. Let OspR be the collection of R-operator
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spaces. Given X “ pX, sX q and Y “ pY, sY q in OspR, and δ ě 0, let Emb
OspR

δ pX,Y q be the space

of δ-embeddings φ : X Ñ Y such that }sY ˝ φ ´ sX}cb ď δ. This is a metric space when we consider

the metric dcbpφ,ψq :“ }φ ´ ψ}cb. Again, we will call a 0-embedding, simply, an embedding. We

let AutOspR

pXq be the group of surjective linear complete isometries φ from X to itself such that

sY ˝ φ “ sX . Note that when R is the trivial operator space t0u, R-operator spaces can be identified

with operator spaces.

Similarly, we let Osy be the class of operator systems. Given X,Y P Osy, and δ ě 0, let

Emb
Osy

δ pX,Y q be the collection of all injective unital complete contractions φ : X Ñ Y such that››φ´1
››

cb
ď 1 ` δ. For a fixed operator system R, let OsyR be the class of R-operator systems, that is

pairs X “ pX, sXq where X is a operator system and sX : X Ñ R is an unital complete contraction.

We define Emb
OsyR

δ pX ,Y q to be the collection of all injective unital complete contractions φ : X Ñ Y

such that
››φ´1

››
cb

ď 1 ` δ and }sX ´ sY ˝ φ}cb ď δ, endowed with the metric dcb pφ,ψq :“ }φ ´ ψ}cb.

We also define AutOsypXq to be the group of unital surjective complete isometries from X to itself,

and AutOsyR

pXq to be the group of unital surjective complete isometries φ from X to itself such that

sX ˝ φ “ sX . Also, when X “ pX, sXq, Y “ pY, sY q are R-operator spaces or R-operator systems, we

write X Ď Y to denote that X Ď Y and sY ↾X“ sX .

In the next definitions, C is either Osp, Osy, OspR for a fixed operator space R, or OsyR for a fixed

operator system R.

Definition 2.1 (Gromov-Hausdorff pseudometric). The Gromov-Hausdorff pseudometric dC is defined

by setting, for finite-dimensional X,Y P C, dCpX,Y q to be the infimum of all δ ą 0 such that there

exist f P EmbC
δpX,Y q and g P EmbC

δpY,Xq such that }g ˝ f ´ IdX}cb ă δ and }f ˝ g ´ IdY }cb ă δ.

It is worth to point out that when C is the class of operator spaces, then it is easily seen that for

every finite dimensional operator systems X and Y one has that dCpX,Y q ď dBMpX,Y q ď 3dCpX,Y q,

where

dBMpX,Y q :“ log
`
inft}T }cb}T´1}cb : T : X Ñ Y is a complete bounded isomorphismu

˘

is the well known Banach-Mazur pseudometric. It follows that the class of operator spaces of dimension

n has diameter ď n, although this class is not compact for n ě 3. The reader can find more information

in [54, Chapter 21].

In the following, we let ̟ : R` Ñ R` be a strictly increasing function, continuous at 0, and

vanishing at 0, such that ̟pδq ě δ.

Definition 2.2 (Stable Fräıssé class). Let A Ď C.

(a) A satisfies the stable amalgamation property (SAP) with modulus ̟ when for every X,Y,Z P A,

δ ě 0, ε ą 0, φ P EmbC
δpX,Y q, and ψ P EmbC

δpX,Zq, there exist V P A, i P EmbCpY, V q, and

j P EmbCpZ, V q such that }i ˝ φ ´ j ˝ ψ}cb ď ̟pδq ` ε.

(b) A is a stable amalgamation class with modulus ̟ when A has the (SAP) and the joint embedding

property, that is, for every X,Y P A there exists Z P A such that EmbCpX,Zq and EmbCpY,Zq

are nonempty.

(c) A is a stable Fräıssé class with modulus ̟ when it is a stable amalgamation class and A is

separable with respect to the Gromov-Hausdorff pseudometric dC.

It is easy to see that if A has an element that can be embedded into any other member of A then

the stable amalgamation property for A implies the joint embedding property for A.
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Definition 2.3 (Stable Homogeneity). Let A Ď C. We say that M P C satisfies the stable homogeneity

property with respect to A with modulus ̟ if:

(a) EmbCpX,Mq is nonempty for every X P A.

(b) For every X P A, δ ě 0, ε ą 0, and f, g P EmbC
δpX,Mq there is α P AutCpMq such that

}α ˝ g ´ f}cb ď ̟pδq ` ε.

When A is the collection of all finite-dimensional X Ď M in C, we say that M is stably homogeneous

with modulus ̟.

Definition 2.4. Given a stable Fräıssé class A Ď C, we write rAs to denote the class of E P C such

that every finite-dimensional X Ď E is a limit, with respect to the Gromov-Hausdorff distance, of a

sequence of subspaces of elements in A. Let xAy be the collection of all finite-dimensional elements of

rAs.

Notice that E P rAs if and only if for every finite-dimensional X Ď E and every δ ą 0 there is some

Y P A such that EmbC
δpX,Y q ‰ H.

Definition 2.5 (Fräıssé limit). Let A Ď C. The stable Fräıssé limit of A (with modulus ̟), denoted

by FLim A, if it exists, is the unique separable object in rAs that is A-stably homogeneous (with

modulus ̟).

A usual back-and-forth argument shows the following; see for instance [37, Subsection 2.6], [18,

Theorem 2.26].

Proposition 2.6. Suppose that A Ď C is a stable amalgamation class, and M P C is separable. Then

the Fräıssé limit FLim A exists. Furthermore the following assertions are equivalent:

(1) M “ FLim A.

(2) M is stably homogeneous with modulus ̟, and the class AgeCpMq of all finite-dimensional X P C

such that X Ď M is equal to xAy.

Notice that whenever FLimxAy exists, FLim A also exists and it must be equal to FLimxAy. Stable

Fräıssé classes and stable Fräıssé limits are in particular Fräıssé classes and Fräıssé limits as metric

structures in the sense of [4]. One can realize FLim A as the limit of an inductive sequence of elements

of A with C-embeddings as connective maps, and it can be proved that every separable structure in

rAs admits a C-embedding into FLim A.

The nomenclature “homogeneous” is related to the concept of “disposition” in Banach space theory,

that for example was used by V. I. Gurarij in [25] to define his space (of universal “placement”). At

a midpoint of both notions, we say that M P C is stably of A-disposition (with modulus ̟) when

EmbCpX,Mq ‰ H for every X P A and when for every δ ě 0 and ε ą 0, every X,Y P A every

f P EmbC
δpX,Mq and ι P EmbC

δpX,Y q there is some g P EmbCpY,Mq such that }g˝ ι´f}cb ď ̟pδq`ε.

It it proved in [37, Proposition 2.12], implication (6)ñ(1), that a separable M P rAs is the stable

Fräıssé limit of A if and only if M is stably of A-disposition.

Several structures in functional analysis arise as the Fräıssé limit of a suitable class A. For example

the class of finite-dimensional operator Hilbert spaces is a Fräıssé class, and its corresponding limit is

the separable operator Hilbert space OH introduced and studied in [53]. Another natural example of

a family with the stable amalgamation property is the collection of finite-dimensional Banach spaces

tℓnp uně0 for every p P p1,`8q. In the case p “ 2 one can use the polar decomposition for bounded
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operators on a Hilbert space to deduce that every δ-embedding between Hilbert spaces is close to

an embedding. The other cases are treated in [18]. In this case one uses a result by Schechtman

in [56] stating that for every such p ‰ 2 there exists a function ̟p : R` Ñ R` continuous at

0 and vanishing at 0, with the property that if φ : ℓkp Ñ ℓmp is a δ-embedding for some δ ą 0,

then there exist n P N, I P Embpℓmp , ℓ
n
p q, and J P Embpℓkp, ℓ

n
p q such that }J ´ I ˝ φ} ď ̟ppδq.

The corresponding Fräıssé limit FLimtℓnp un of tℓnp un is the Lebesgue space Lpr0, 1s. When p is an

even integer other than 2, the space Lpr0, 1s is not stably homogeneous or, equivalently, the class

xtℓnp uny does not have the stable amalgamation property. In fact, in this case, Lpr0, 1s is not even

approximately ultrahomogeneous as shown in [41]; see also [18]. An operator space M is approximately

ultrahomogeneous when for every finite-dimensional X Ď M , every complete isometry φ : X Ñ M ,

and every ε ą 0 there is a surjective linear complete isometry α : M Ñ M such that }α ↾X ´φ}cb ď ε.

Obviously, stably homogeneous spaces are approximately ultrahomogeneous. Lusky proved in [41] that

the space Lpr0, 1s is approximately ultrahomogeneous when p P p1,`8q is not an even integer. This has

been recently improved on [18, Theorem 4.1] where it is shown that the spaces Lpr0, 1s for those p’s are

“quasi” stably homogeneous in the sense that there is a modulus of stability depending on dimensions

r̟ : Nˆr0,8q Ñ r0,8q such that for every δ ě 0, ε ą 0, every finite dimensional subspaceX Ď Lpr0, 1s,

and f, g P EmbδpX,Lpr0, 1sq there exists α P AutpLpr0, 1sq such that }α ˝ g ´ f}cb ď ̟pdimX, δq ` ε.

The Ramsey property of the following classes, proved to be Fräıssé in [37], are the main subject of

the present paper. Recall that an operator space X is injective if for every operator spaces Y Ď Z,

every complete contraction from Y to X can be extended to a complete contraction from Z to X. One

defines injective operator systems similarly, by replacing complete contractions with unital complete

contractions.

Theorem 2.7. Let C be either Osp or Osy. Suppose that I is a countable class of finite-dimensional

injective elements of C such that for X,Y P I, the 8-sum X ‘8 Y embeds into an element of I. Then

I is a stable amalgamation class and xIy is a stable Fräıssé class, both with stability modulus ̟pδq “ δ

if C is Osp, and ̟ pδq “ 2δ if C is Osy.

For a class A of operator spaces, and an operator space R, we let AR be the class of R-operator

spaces of the form pX, sq where X P A. There is a close relation between the stable amalgamation

property of A and the one of AR. Similar considerations and notation apply in the case of operator

systems.

Proposition 2.8. Let C be either Osp or Osy. Suppose that A is a class of finite-dimensional injective

elements of C that has the stable amalgamation property with modulus ̟pδq. Suppose that R P C is

separable and such that every element in AgeCpRq embeds into an element of A.

If either: (a) for X,Y P A, the 8-sum X‘8Y belongs to A, or (b) R is injective, and for X,Y P A,

the 8-sum X ‘8 Y has a C-embedding into an element of A, then the class AR satisfies the stable

amalgamation property with modulus ̟pδq ` δ.

Moreover, suppose that each element of A is injective, and R is A´nuclear, that is, the identity

map of R is the pointwise limit of C-morphisms that factor through elements of A; see [37, Definition

3.4]. Then the Fräıssé limit FLim AR is pFLim A,Ωq for an appropriate complete contraction Ω :

FLim A Ñ R, that when C “ Osy is in addition unital (see Proposition 3.12 (3) and Proposition 4.4

(3) for more details).
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Proof. We suppose that (a) holds. The proof when (b) holds is similar. Let δ ě 0, ε ą 0, X “ pX, sX q,

Y “ pY, sY q and Z “ pZ, sZq all in AR, and let φ P EmbCR

δ pX,Zq and ψ P EmbCR

δ pX,Yq. By definition,

φ P EmbC
δpX,Zq and ψ P EmbC

δpX,Y q, so it follows from the (SAP) of the class A with modulus ̟

that there is some V P A, i P EmbCpY, V q and j P EmbCpZ, V q such that }i ˝ φ´ j ˝ ψ}cb ď ̟pδq ` ε.

Let R0 P A, and let θ P EmbCpS,R0q where S P AgeCpRq is generated by Im sY ` Im sZ . Set, W :“

V ‘8 R0 P A. We define W :“ pW,π2q P AR, where π2 : V ‘8 R0 Ñ R0 Ď R is the canonical second-

coordinate projection. Let also I : Y Ñ W and J : Z Ñ W be defined by Ipyq :“ pipyq, θpsY pyqqq

and Jpzq :“ pjpzq, θpsZpzqqq. It follows that I P EmbCR

pY,Wq and that J P EmbCR

pZ,Wq. From

definitions, we have that }I ˝ φ ´ J ˝ ψ}cb “ maxt}i ˝ φ ´ j ˝ ψ}cb, }θ ˝ sY ˝ φ ´ θ ˝ sZ ˝ ψ}cbu ď

maxt̟pδq ` ε, }sY ˝ φ´ sX}cb ` }sZ ˝ψ ´ sX}cbu ď ̟pδq ` δ ` ε, as we are assuming that ̟ satisfies

̟pδq ě δ.

Suppose now that each element of A is injective, and that R is A-nuclear. We consider the case of

operator spaces. The case of operator systems is entirely similar. Write FLim AR “ pM,Ωq. We now

show that M “FLim A. To this purpose, as we mentioned before, it suffices to prove that the following

property of approximate local disposition holds: for every ε ą 0, δ ě 0, F P A, tuple a “ pa0, . . . , anq

in F , injective completely contractive map f : span paq Ñ M such that
››f´1

››
cb

ď δ, there exists a

completely isometric linear map g : F Ñ M such that maxi }g paiq ´ f paiq} ď ̟ pδq ` δ ` ε.

Consider the completely contractive map Ω˝f : span paq Ñ R. We are assuming that R is A-nuclear.

By the equivalence of (1) and (3) in [37, Proposition 3.5], there exists a completely contractive map

s : F Ñ R such that maxi }s paiq ´ pΩ ˝ fq paiq} ď ε. By the homogeneity property of FLim AR “

pM,Ωq, there exists a CR-embedding g : pF, sq Ñ pM, ωq such that }g paiq ´ f paiq} ď ̟ pδq ` δ ` ε.

This concludes the proof. �

2.3. The approximate Ramsey property. We now introduce and characterize various version of

the Ramsey property, which are strengthening of the amalgamation property and that, as we will see,

can be used to obtain information about the automorphism group of Fräıssé limits. We still adopt the

notation from above.

Definition 2.9 (Approximate and stable Ramsey Property). Let C be one of the classes Osp, OspR,

Osy or OsyR, and let A Ď C.

(a) A satisfies the approximate Ramsey property (ARP) if for every X,Y P A, ε ą 0 there exists

Z P A such that any continuous coloring of EmbCpX,Zq ε-stabilizes on γ ˝ EmbCpX,Y q for some

γ P EmbCpY,Zq; that is, for every 1-Lipschitz mapping c : EmbCpX,Zq Ñ r0, 1s there is some

γ P EmbCpY,Zq such that Oscpc ↾ pγ˝EmbCpX,Y qqq “ maxη0,η1PEmbCpX,Y q |cpγ˝η0q´cpγ˝η1q| ď ε.

(b) A satisfies the stable Ramsey property (SRP) with stability modulus̟ if for every X,Y P A, ε ą 0,

δ ě 0 there exists Z P A such that every continuous coloring of EmbC
δpX,Zq pε`̟pδqq-stabilizes

on γ ˝ EmbC
δpX,Y q for some γ P EmbCpY,Zq.

(c) A satisfies the discrete approximate Ramsey property, or discrete (ARP), if for every X,Y P

A, r P N and ε ą 0 there exists Z P A such that every r-coloring of EmbCpX,Zq has an ε-

monochromatic set of the form γ ˝ EmbCpX,Y q for some γ P EmbCpY,Zq; that is, for every

coloring c : EmbCpX,Zq Ñ r “ t0, 1, . . . , r ´ 1u there is some γ P EmbCpY,Zq and some j P r

such that γ ˝ EmbCpX,Y q Ď pc´1pjqqε. The discrete stable Ramsey property, or discrete (SRP),

is defined similarly.
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(d) The compact (ARP) and the compact (SRP) of A are defined as the (ARP) and the (SRP),

respectively, by replacing continuous colorings with compact colorings, i.e. 1-Lipschitz mappings

into compact metric spaces.

It is not difficult to see that the (SRP) with modulus ̟ of a class implies the stable amalgamation

property of the class with modulus ̟. Also, it is worth to point out that the (ARP) as in Definition

2.9 is equivalent to the one considered in [44, Definition 3.3] when R-operator spaces or systems are

regarded as structures in the logic for metric structures [5] as in [21, Appendix B] or [37, §8.1]. The

following proposition provides reformulations of the (ARP) in terms of discrete or compact colorings,

and it is a generalization of [3, Proposition 2.7] where the case of Banach spaces is treated.

Proposition 2.10. Let C be one of the classes Osp, OspR, Osy or OsyR. The following are equivalent

for a class A Ď C:

(1) A satisfies the (ARP).

(2) A satisfies the discrete (ARP).

(3) A satisfies the compact (ARP).

Proof. The compact (ARP) obviously implies the (ARP). Suppose that A satisfies the (ARP), and

let us prove that A satisfies the discrete (ARP). This is done by induction on r P N. The case r “ 1

is trivial. Suppose that we have shown that A satisfies the discrete (ARP) for r-colorings. Consider

X,Y P A and ε ą 0. Then by the inductive hypothesis, there is Z0 P A such that every r-coloring of

EmbC pX,Z0q ε-stabilizes on γ ˝ EmbC pX,Y q for some γ P EmbC pY,Z0q. Since by the assumption A

satisfies the (ARP), there is Z P A such that every continuous coloring of EmbC pX,Zq ε{2-stabilizes

on γ ˝ EmbC pX,Z0q for some γ P EmbC pZ0, Zq. We claim that Z witnesses that A satisfies the

discrete (ARP) for pr ` 1q-colorings. Indeed, suppose that c is an pr ` 1q-coloring of EmbC pX,Zq.

Define f : EmbC pX,Zq Ñ r0, 1s by f pφq :“ 1
2
dcb

`
φ, c´1 prq

˘
. This is a continuous coloring, so by

the choice of Z there exists γ P EmbCpZ0, Zq such that f ε{2-stabilizes on γ ˝ EmbCpX,Z0q. Now,

if there is some φ P EmbCpX,Z0q such that cpγ ˝ φq “ r, then γ ˝ EmbCpX,Z0q Ď pc´1prqqε, so

choosing an arbitrary γ̄ P EmbCpY,Z0q we obtain that c ε-stabilizes on γ ˝ γ̄ ˝ EmbCpX,Y q. Otherwise,

pγ ˝ EmbCpX,Z0qq X c´1prq “ H, so defining c̄pφq :“ c pγ ˝ φq for φ P EmbCpX,Z0q gives an r-

coloring of EmbCpX,Z0q. By the choice of Z0 there exists γ̄ P EmbCpY,Z0q such that c̄ ε-stabilizes on

γ̄ ˝ EmbCpX,Y q. Therefore c ε-stabilizes on γ ˝ γ̄ ˝ EmbCpX,Y q. This concludes the proof that the

(ARP) implies the discrete (ARP).

Finally, the discrete (ARP) implies the compact (ARP). Indeed, given ε ą 0 and a compact metric

space K, one can find a finite ε-dense subset D Ď K. Thus if Z P A witnesses the discrete (ARP) for

X,Y , ε and D, then given a 1-Lipschitz f : EmbC Ñ K we can define a coloring c : EmbCpX,Zq Ñ

D Ď K such that dKpcpφq, fpφqq ď ε for every φ P EmbCpX,Zq. In this way, if c ε-stabilizes on

γ ˝ EmbCpX,Y q, then f 3ε-stabilizes on γ ˝ EmbCpX,Y q. �

The following is a useful property of classes with the (SAP). It can be easily proved by induction,

using the fact that the spaces EmbδpX,Y q for finite-dimensional X,Y P A are compact (See also [3,

Claim 2.13.2], where a similar result is proved for Banach spaces).

Proposition 2.11. Suppose that A satisfies the stable amalgamation property with modulus ̟. For

every F Ď A finite and every ε, δ ą 0 there exist V P A and IX P EmbCpX,V q for X P F such that
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for every (not necessarily distinct) X,Y,Z P F and every γ P EmbC
δpX,Y q and η P EmbC

δpX,Zq there

exists J P EmbCpZ, V q such that }IY ˝ γ ´ J ˝ η}cb ď ̟pδq ` ε.

In particular, for every X,Y P F one has that IY ˝ EmbC
δpX,Y q Ď pEmbCpX,V qq̟pδq`ε.

The next proposition generalizes [3, Proposition 2.13].

Proposition 2.12. Suppose that A Ď C satisfies the stable amalgamation property with modulus ̟.

Then the following assertions are equivalent:

(1) A satisfies the (ARP).

(2) A satisfies the (SRP) with modulus ̟.

(3) A satisfies the discrete (SRP) with modulus ̟.

(4) A satisfies the compact (SRP) with modulus ̟.

Suppose that A Ď B Ď xAy also satisfies the stable amalgamation property with modulus ̟. Then

(1)–(4) are equivalent to any of the following conditions.

(5) B satisfies the (ARP).

(6) For every X,Y P A, every ε ą 0 and every r P N there is Z P B such that every r-coloring of

EmbCpX,Zq has an ε-monochromatic set of the form γ ˝ EmbCpX,Y q for some γ P EmbCpY,Zq.

Proof. A simple modification of the proof of the Proposition 2.10 gives that the compact (SRP) with

modulus ̟ implies the (SRP) with modulus ̟, which in turn implies the discrete (SRP) with modulus

̟. Trivially, the discrete (SRP) with modulus ̟ implies the discrete (ARP), and this one is equivalent

to the (ARP) by Proposition 2.10. We will now show that the (ARP) implies the compact (SRP)

with modulus ̟. Suppose that A satisfies the (ARP). Fix X,Y P A, δ, ε ą 0 and a compact metric

space K. We use Proposition 2.11 to find Y0 P A such that for every φ,ψ P EmbC
δpX,Y q there are

i, j P EmbCpY, Y0q such that }i˝φ´j˝ψ}cb ď ̟pδq`ε. We will consider the space LippEmbC
δpX,Y q,Kq

of 1-Lipschitz maps from EmbC
δpX,Y q to K as a compact metric space, endowed with the metric

d pf, gq “ sup
 
dK pf pφq , g pφqq : φ P EmbC

δpX,Y q
(
. By Proposition 2.10, A satisfies the compact

(ARP), so we apply it to Y, Y0 P A and the compact space LippEmbC
δpX,Y q,Kq, and obtain some

Z P A such that every 1-Lipschitz coloring c : EmbCpY,Zq Ñ LippEmbC
δpX,Y q,Kq ε-stabilizes on

γ ˝ EmbCpY, Y0q for some γ P EmbCpY0, Zq. We claim that Z works, so let c : EmbC
δpX,Zq Ñ K be

1-Lipschitz. We can then define the 1-Lipschitz mapping pc : EmbCpY,Zq Ñ LippEmbC
δpX,Y q,Kq by

setting, for γ P EmbCpY,Zq, pcpγq : EmbC
δpX,Y q Ñ K, φ ÞÑ c pγ ˝ φq. By the choice of Z, there exists

γ̄ P EmbCpY0, Zq be such that pc ε-stabilizes on γ̄ ˝ EmbCpY, Y0q. Choose an arbitrary ̺ P EmbCpY, Y0q.

We claim that c p3ε `̟ pδqq-stabilizes on γ̄ ˝̺˝EmbC
δpX,Y q. Let φ,ψ P EmbC

δpX,Y q. By the choice of

Y0 there are i, j P EmbCpY, Y0q such that dcb pi ˝ φ, j ˝ ψq ď ε`̟pδq. Since dppcpγ̄ ˝̺q,pcpγ̄ ˝ iqq ď ε and

dppcpγ̄ ˝̺q,pcpγ̄ ˝ jqq ď ε, it follows that dKpcpγ̄ ˝̺ ˝φq, cpγ̄ ˝ i˝φqq ď ε, dKpcpγ̄ ˝̺ ˝ψq, cpγ̄ ˝ j ˝ψqq ď ε.

Furthermore, from dcb pi ˝ φ, j ˝ ψq ď ε ` ̟pδq and the fact that c is 1-Lipschitz we deduce that

dKpcpγ̄ ˝ ̺ ˝ φq, cpγ̄ ˝ ̺ ˝ ψqq ď 3ε `̟pδq.

Suppose now that A Ď B Ď xAy also satisfies the stable amalgamation property with the same

modulus ̟. Obviously (1) implies (6). Let us prove that (6) implies (5): We prove that, assuming

that (6) holds, the class B satisfies the discrete (ARP). Fix X,Y P B.

Claim 2.12.1. Let ε, δ ą 0 and let X0 P A and tX P EmbC
δpX,X0q. There are Y0 P A and tY P

EmbC
δpY, Y0q such that for every η P EmbCpX,Y q there is some γ P EmbCpX0, Y0q such that }tY ˝ η ´

γ ˝ tX}cb ď ̟pδq ` ε.
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Proof of Claim: Let 0 ă δ0 ă δ be such that ̟pδ0q ď ̟pδq{3 and set ε0 “ ε{3. Let Z0 P A and

t0 P EmbC
δ0

pY,Z0q. Apply Proposition 2.11 in the case of the class B to F :“ tX,X0, Z0u, δ0 and

ε0 to obtain Z1 P B and J0 P EmbCpZ0, Z1q. Fix Z2 P A and t1 P EmbC
δ0

pZ1, Z2q. Apply again

Proposition 2.11, now in the case of the class A, for F :“ tX0, Z0, Z2u, δ0 and ε0 to find the Y0 P A,

and J1 P EmbCpZ2, Y0q. Let I P EmbCpZ0, Y0q be such that

}J1 ˝ t1 ˝ J0 ´ I}cb ď ̟pδ0q ` ε0. (1)

We claim that Y0 and tY :“ I ˝ t0 P EmbC
δ0

pY, Y0q Ď EmbC
δpY, Y0q work. Suppose that η P EmbCpX,Y q.

By the choice of Z1 there is some pη P EmbCpX0, Z1q such that

}J0 ˝ t0 ˝ η ´ pη ˝ tX}cb ď ̟pδ0q ` ε0. (2)

Now by the choice of Y0, there is some γ P EmbCpX0, Y0q such that

}J1 ˝ t1 ˝ pη ´ γ}cb ď ̟pδ0q ` ε0. (3)

It follows from the inequalities in (1), (2) and (3),

}I ˝ t0 ˝ η ´ J1 ˝ t1 ˝ J0 ˝ t0 ˝ η}cb ďp̟pδ0q ` ε0q}t0 ˝ η}cb ď p̟pδ0q ` ε0q,

}J1 ˝ t1 ˝ J0 ˝ t0 ˝ η ´ J1 ˝ t1 ˝ pη ˝ tX}cb ď}J1 ˝ t1}cbp̟pδ0q ` ε0q ď p̟pδ0q ` ε0q,

}J1 ˝ t1 ˝ pη ˝ tX ´ γ ˝ tX}cb ďp̟pδ0q ` ε0q}tX}cb ď p̟pδ0q ` ε0q.

Consequently,

}tY ˝ η ´ γ ˝ tX}cb “ }I ˝ t0 ˝ η ´ γ ˝ tX}cb ď 3̟pδ0q ` 3ε0 ď ̟pδq ` ε. �

Fix now ε ą 0, and let δ ą 0 be such that ̟pδq ď ε{15 and set ε0 :“ ε{5. Fix also X0 P A

and tX P EmbC
δpX,X0q. We use the Claim 2.12.1 to find Y0 P A and tY P EmbC

δpY, Y0q. We apply

(6) to X0, Y0, ε0 and r to find the corresponding Z0 P B. Since B satisfies the stable amalgamation

property with modulus ̟, we can apply Proposition 2.11 to F :“ tX0, Y0,X, Y, Z0u, δ and ε0 and

find Z P B and for each W P F some JW P EmbCpW,Zq such that for every (not necessarily distinct)

W0,W1,W2 P F and every γ P EmbC
δpW0,W1q and η P EmbC

δpW0,W2q there is J P EmbCpW2, Zq such

that }IW1
˝ γ ´ J ˝ η}cb ď ̟pδq ` ε0. We claim that Z works. For suppose that c : EmbCpX,Zq Ñ r,

and we induce a coloring pc : EmbCpX0, Z0q Ñ r as follows. By applying the defining property of

Z to the triple pX,Z0,Xq, we obtain that IZ0
˝ EmbC

δpX,Z0q Ď pEmbCpX,Zqq̟pδq`ε0
, so, for each

γ P EmbCpX0, Z0q we can find pγ P EmbCpX,Zq such that }IZ0
˝ γ ˝ tX ´ pγ}cb ď ̟pδq ` ε0, and declare

that pcpγq :“ cppγq. Let J P EmbCpY0, Z0q and j ă r be such that J ˝ EmbCpX0, Y0q Ď ppc´1pjqqε0
. Let

I P EmbCpY,Zq be such that

}I ´ IZ0
˝ J ˝ tY }cb ď ̟pδq ` ε0. (4)

Let us see that I ˝ EmbCpX,Y q Ď pc´1pjqqε. Fix η P EmbCpX,Y q. Let pη P EmbCpX0, Y0q be such that

}pη ˝ tX ´ tY ˝ η}cb ď ̟pδq ` ε0. (5)

Let γ P EmbCpX0, Z0q be such that

}γ ´ J ˝ pη}cb ď ε0 and pcpγq “ j, (6)

so, by the definition of pc, let now pγ P EmbCpX,Zq be such that

}pγ ´ IZ0
˝ γ ˝ tX}cb ď ̟pδq ` ε0 and cppγq “ j. (7)
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Putting all this together,

}I ˝ γ ´ IZ0
˝ J ˝ tY ˝ η}cb ď̟pδq ` ε0

}IZ0
˝ J ˝ tY ˝ η ´ IZ0

˝ J ˝ pη ˝ tX}cb ď̟pδq ` ε0

}IZ0
˝ J ˝ pη ˝ tX ´ IZ0

˝ γ ˝ tX}cb ďε0.

From (4), (5), (6) and (7) we obtain

}I ˝ η ´ pγ}cb ď 3̟pδq ` 4ε0 ď ε and cppγq “ j.

(5) implies (1): The proof of that the discrete (ARP) of B implies the discrete (ARP) of A is similar to

that of the implication 6) implies 5) so we only sketch it and we leave further details to the reader. Fix

X,Y P A, ε ą 0 and r P N. Let δ ą 0 be such that ̟pδq ď ε{8 and set ε0 :“ ε{4. Let Z0 P B Ď xAy be

such that every r-coloring of EmbCpX,Z0q has an ε0-monochromatic set of the form J ˝ EmbCpX,Y q

for some J P EmbCpY,Z0q. Let Z1 P A and t P EmbC
δpZ0, Z1q. We use the Proposition 2.11 in the

case of the class A for F “ tX,Y,Z1u, ε and δ to find the corresponding Z. Then it follows that

every r-coloring of EmbCpX,Zq has an ε-monochromatic set of the form I ˝ EmbCpX,Y q for some

I P EmbCpY,Zq. �

It is unclear to us whether the characterization of the (ARP) provided in 2.12 holds for an arbitrary

class A Ď C.

Just like for the stable amalgamation property we presented in Proposition 2.8, we have the following

relationship between the approximate Ramsey properties of a class A of f.d. operator spaces or systems,

and the corresponding class AR.

Proposition 2.13. Let C be either Osp or Osy. Suppose that A is a class of finite-dimensional elements

of C such that for X,Y P A, the 8-sum X ‘8 Y belongs to A.

(1) Suppose that R P C is such that every element in AgeCpRq embeds into an element of A.

(1.1) If A has the (ARP), then the class AR also has the (ARP).

(1.2) If A has the (SRP) with modulus ̟pδq, then the class AR also has the (SRP) with modulus

̟pδq ` δ.

(2) Suppose that R P A.

(2.1) If AR has the (ARP), then the class A also has the (ARP).

(2.2) If AR has the (SRP) with modulus ̟pδq, then the class A also has the (SRP) with modulus

̟pδq.

Proof. (1.1) is proved similarly than (1) in Proposition 2.8, so we leave the details to the reader.

(1.2): If A has the (SRP) with modulus ̟pδq, then it satisfies the stable amalgamation property with

modulus ̟pδq. It follows from Proposition 2.8 that AR satisfies the stable amalgamation property

with modulus ̟pδq ` δ, and from this, (1.1), and the equivalence between (1) and (2) in Proposition

2.12, we obtain that AR satisfies the (SRP) with modulus ̟pδq ` δ. (2) is proved similarly. �

2.3.1. Extreme amenability and Ramsey properties. Recall that a topological group G is called ex-

tremely amenable if every continuous action of G on a compact Hausdorff space has a fixed point. We

are going to present a characterization of extreme amenability for automorphism groups of Fräıssé

limits in one of the categories introduced before in terms of a Ramsey property, which can be seen as

an instance of the Kechris-Pestov-Todorcevic correspondence [30] in the case of metric structures in
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[44]. The key for this characterization is the following intrinsic reformulation of extreme amenability

from [51, Theorem 2.1.11].

Theorem 2.14. [51] A topological group G is extremely amenable if and only if there is a directed

collection of bounded left-invariant continuous pseudometrics pdiqiPI determining the topology of G

and such that every metric G-space G{tdi “ 0u is finitely oscillation stable, that is for every finite

F Ď G{tdi “ 0u, every bounded and uniformly continuous γ : G{tdi “ 0u Ñ R and every ε ą 0 there

is g P G such that Oscpγ ↾ pg ¨ F qq “ maxrh0s,rh1sPF |γprg ¨ h0sq ´ γprg ¨ h1sq| ď ε.

In the previous statement, rhs denotes the equivalence class of h in the quotient G{tdi “ 0u.

As before, let C be one of the classes Osp, OspR, Osy, or OsyR, with the corresponding notion of

C-embedding. Fix E P C. For a fixed finite dimensional X Ď E, we let dX be the pseudometric

on AutCpEq defined by dXpα, βq :“ }pα ´ βq ↾ X}cb. In general, pdX q where X varies within the

finite-dimensional subspaces of E defines the topology on AutCpEq. Suppose that E P C is stably

homogeneous. Observe that by the stable homogeneity property of E, the restriction map α ÞÑ α ↾ X

is an isometry from pAutCpEq, dX q onto a dense subset of EmbCpX,Eq. In particular, a continuous

coloring of pAutCpEq, dX q induces a continuous coloring of EmbCpX,Eq. Also, given a finite F Ď

EmbCpX,Eq we can find a finite dimensional Y Ď E such that F Ď EmbCpX,Y q, where we consider

EmbCpX,Y q canonically included in EmbCpX,Eq after composing with the corresponding inclusion of

Y into E. Reciprocally each set EmbCpX,Y q is compact, so it has finite ε-dense subsets. Theorem

2.14 can be restated as follows:

Lemma 2.15. The following statements are equivalent:

(a) AutCpEq is extremely amenable.

(b) For every finite-dimensional X,Y Ď E and every ε ą 0, every 2-coloring of EmbCpX,Eq, has

an ε-monochromatic set of the form α ˝ EmbCpX,Y q for some α P AutCpEq, that is for every

c : EmbCpX,Eq Ñ r there is there exists α P AutCpEq and j P t0, . . . , r ´ 1u such that for every

γ P EmbCpX,Y q there exists ξ P EmbCpX,Eq such that cpξq “ j and }α ˝ γ ´ ξ}cb ď ε.

We refer the reader to [51, Chapter 1] for more information on oscillation stability. We suppose

that A Ď C is such that xAy is a stable Fräıssé class with modulus ̟, whose Fräıssé limit is E. We can

now state the analogue in this context of the celebrated Kechris-Pestov-Todorcevic correspondence

from [30]. The possibility of using the KPT correspondence in the setting of metric structures was

first suggested by Melleray and Tsankov in [44].

Proposition 2.16 (KPT correspondence for R-operator spaces and systems). Suppose that A Ď C is

such that A and xAy satisfy the stable amalgamation property with stability modulus ̟, and let E be

the corresponding Fräıssé limit. The following assertions are equivalent:

(1) AutCpEq is extremely amenable.

(2) For every finite-dimensional X,Y Ă E in C and δ ě 0, ε ą 0, every compact coloring of

EmbC
δpX,Eq has an pε ` ̟pδqq-monochromatic set of the form α ˝ EmbC

δpX,Y q for some α P

AutCpEq.

(3) For every finite-dimensional X,Y Ă E in C and ε ą 0, every finite coloring of EmbCpX,Eq has

an ε-monochromatic set of the form α ˝ EmbCpX,Y q for some α P AutCpEq.

(4) For every X,Y Ă E that belong to A and ε ą 0, every finite coloring of EmbCpX,Eq has an

ε-monochromatic set of the form α ˝ EmbCpX,Y q for some α P AutCpEq.
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(5) xAy satisfies the (ARP).

(6) A satisfies the (ARP).

(7) For every X,Y P A, every r P N and every ε ą 0 there is Z P xAy such that every r-coloring of

EmbCpX,Zq has an ε-monochromatic set of the form γ ˝ EmbCpX,Y q for some γ P EmbCpY,Zq.

The key part is the equivalence between (1) and (7) since in this last condition, X,Y Ď E are not

arbitrary finite-dimensional subspaces, but are assumed to be in A while Z is not necessarily in A but

in the wider class xAy.

Proof. The proof uses standard arguments; see for example [44, Proposition 3.4 and Theorem 3.10].

We first show that properties (1)–(4) are equivalent, and then we show that properties (4)–(7) are

equivalent.

(1) implies (2): Fix all data, in particular, let c : EmbC
δpX,Eq Ñ K be a compact coloring, and let

K “
Ť

jăr Uj be a covering of K by disjoint sets Uj of diameter less than ε{3. We consider the induced

coloring pc : EmbCpX,Eq Ñ r that declares pcpγq “ j when cpγq P Uj. Since E is stably homogeneous

with modulus ̟, it follows from the Fräıssé correspondence in Theorem 2.6 that AgeCpEq is a stable

Fräıssé class with modulus ̟, so we can use (1) in Proposition 2.11 to find Y0 Ď E containing

and I P EmbpY, Y0q such that I ˝ EmbC
δpX,Y q Ď pEmbCpX,Y0qq̟pδq`ε{6. By composing with the

corresponding inclusion, we identify each δ-embedding from X into Y0 as a δ-embedding from X into

E. Since EmbC
δpX,Y0q is compact, we can use Lemma 2.15 to find β P AutCpEq and j ă r such

that β ˝ EmbC
δpX,Y0q Ď ppc´1pjqqε{6. Let us see that α :“ β ˝ I satisfies the desired property: Given

γ P EmbC
δpX,Y q, let η P EmbCpX,Y0q such that }I ˝ γ ´ η}cb ď ̟pδq ` ε{6. Let also ξ P EmbCpX,Eq

such that cpξq “ j and }β ˝η´ ξ}cb ď ε{6, and consequently, }α˝γ´ ξ}cb ď ̟pδq ` ε{3. Since Uj Ď K

has diameter less than ε{3, it follows that Oscpc ↾ pα ˝ EmbC
δpX,Y qqq ď ̟pδq ` ε.

(2) implies (3): It suffices to prove that the following holds for every δ ą 0: for every finite-dimensional

X,Y Ă E in C, and ε ą 0, every finite coloring of EmbC
δpX,Eq has an pε ` ̟pδqq-monochromatic set

of the form α ˝ EmbCpX,Y q for some α P AutCpEq. Fix a finite coloring c : EmbC
δpX,Eq Ñ r, and

let K be the ball of ℓk8 centered at 0 and of radius 2, and let f : EmbC
δpX,Eq Ñ K be defined by

fpσq :“ pdcbpσ, c´1piqqqiăr . This is a compact coloring, so by the hypothesis, there is α P AutCpEq such

that the oscillation of f on α ˝ EmbC
δpX,Y q is at most ε`̟pδq. Then α ˝ EmbC

δpX,Y q is pε`̟pδqq-

monochromatic for c. Indeed, fix φ̄ P EmbC
δpX,Y q, and let i :“ cpα ˝ φ̄q. Then the i-th coordinate of

fpα ˝ φ̄q with respect to the canonical basis of ℓ8
r is zero. Since the oscillation of f on α ˝ EmbC

δpX,Y q

is at most ε`̟ pδq, we have that for every φ P EmbC
δpX,Y q, f pα ˝ φq and f

`
α ˝ φ̄

˘
have distance at

most ε ` ̟ pδq. Since the i-th coordinate of f pα ˝ φq is equal to dcbpα ˝ φ, c´1piqq, this implies that

α ˝ φ, c´1piqq ď ε`̟pδq.

(3) implies (4) trivially.

(4) implies (7): It is easy to see that (4) and (7), respectively, are equivalent to

(4’) for every X,Y P A, every compact metric space pK,dK q, ε ą 0 and 1-Lipschitz mapping c :

pEmbCpX,Eq, dcbq Ñ pK,dK q there is some α P AutCpEq such that Oscpc ↾ pα˝EmbCpX,Y qqq ď ε.

(7’) for every X,Y P A, every compact metric space pK,dK q and ε ą 0 there is some Z P xAy such

that for everyn 1-Lipschitz mapping c : EmbCpX,Zq Ñ K there is some γ P EmbCpY,Zq such

that Oscpc ↾ pγ ˝ EmbCpX,Y qqq ď ε.

This is similarly proved as the equivalence between the discrete (ARP) and the compact (ARP)

(Proposition 2.10). Suppose by contradiction that (7’) does not hold. Therefore there exist X,Y Ă E
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in A, ε0 ą 0 and a compact metric pK,dK q witnessing that. Let DX Ď EmbCpX,Eq and DY Ď

EmbCpY,Eq be countable dense subsets, and let pZnqnPN be an increasing sequence of finite-dimensional

Zn Ă E in xAy, such that Y Ď Z0 and such that for every φ P DX and ψ P DY there exists

n P N such that φ P EmbCpX,Znq and ψ P EmbCpY,Xnq. This implies that
Ť

n EmbCpX,Znq andŤ
n EmbCpY,Znq are dense in EmbCpX,Eq and EmbCpY,Eq, respectively. Choose for each n P N a “bad

1-Lipschitz coloring cn : EmbCpX,Znq Ñ K. Let U be a non-principal ultrafilter on N. We define c :

EmbCpX,Eq Ñ K by choosing for a given φ P EmbCpX,Eq a sequence pφnqn, each φn P EmbCpX,Znq,

such that limn dcbpφ, φnq “ 0, and then by declaring cpφq :“ U ´ lim cnpφnq. We claim that c is well

defined. Indeed, if pψnqn is another sequence such that limn dcbpψn, φq “ 0, then limn dcbpψn, φnq “ 0.

Using the fact that each cn is 1-Lipschitz, this implies that limn |cnpψnq ´ cnpφnq|8 “ 0. Since

U is nonprincipal, we conclude that U ´ lim cnpφnq “ U ´ lim cnpψnq. Let ε ą 0 be arbitrary.

By the assumption (4’) there exists α P AutCpEq such that Oscpc ↾ pα ˝ EmbCpX,Y qq ď ε. Let

D Ď EmbC
δpX,Y q be a finite ε-dense subset. Using the definition of c and the fact that c stabilizes on

α ˝ EmbC
δpX,Y qq, choose n P N such that:

‚ for every φ P D there exists φ̄ P EmbCpX,Znq such that dcbpα ˝ φ, φ̄q ď ε, and such that for every

φ,ψ P D one has that
ˇ̌
cnpφ̄q ´ cnpψ̄q

ˇ̌
ď ε.

‚ there is γ P EmbCpY,Znq such that dcbpα ↾ Y, γq ď ε.

It follows that dcbpφ̄, γ ˝ φq ď 2ε for every φ P D. Hence, |cnpγ ˝ φq ´ cnpγ ˝ ψq| ď 5ε ` ̟pδq for

every φ,ψ P D. Consequently, cn has oscillation at most 7ε `̟pδq on γ ˝ EmbC
δpX,Y q. Since ε is an

arbitrary positive real number, this contradicts the assumption that cn is a “bad” coloring witnessing

the failure of (7’).

The equivalence of (5) –(7) is done in Proposition 2.12.

(7) implies (4): Fix X Ă Y Ă E that belong to A, ε ą 0, and r P N. Let Z P xAy be witnessing that

(7) holds for the given data. Since E is universal for xAy, we may assume that Z is a substructure

of E. Given an r-coloring c of EmbCpX,Eq, we can take its restriction to EmbCpX,Zq, and then find

γ P EmbCpY,Zq such that γ ˝ EmbCpX,Y q is ε-monochromatic for c. Finally, let α P AutCpEq be such

that dcbpα ↾ Y, γq ď ε. It follows that c 2ε-stabilizes on α ˝ EmbCpX,Y q. �

2.3.2. The Dual Ramsey Theorem. The proof of the (ARP) properties of several classes of R-operator

spaces and systems is based on the Dual Ramsey Theorem (DRT) of R. L. Graham and B. L. Rothschild

[22]. Its statement is commonly presented by using partitions, but for practical purposes, we recall it

in terms of rigid surjections between finite linear orderings. Given two linear orderings pR,ăRq and

pS,ăSq, an onto map f : R Ñ S is a rigid surjection when minR f
´1ps0q ă minR f

´1ps1q for every

s0, s1 P S such that s0 ăS s1. The class of rigid surjections from R onto S is denoted by EpipR,Sq.

Theorem 2.17 ((DRT) [22]). For every finite linear orderings R and S and every r P N there exists

an integer n P N such that, considering n naturally ordered, every r-coloring of Epipn,Rq has a

monochromatic set of the form EpipS,Rq ˝ γ “ tσ ˝ γ : σ P EpipS,Rqu for some γ P Epipn, Sq.

3. The Ramsey property for operator spaces

The aim of this section is to prove the extreme amenability of the automorphism groups of operator

spaces which are Fräıssé limits of certain classes of finite-dimensional injective operator spaces.
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3.1. Fräıssé limits of exact operator spaces. Recall that an operator space E is injective if it

is injective in the category of operator spaces; that is, whenever X Ă Y are operator spaces, any

completely contractive map φ : X Ñ E can be extended to a completely contractive map ψ : Y Ñ E.

The finite-dimensional injective operator spaces are precisely the ones of the form Mq1,s1
‘8 ¨ ¨ ¨ ‘8

Mqn,sn for n, q1, s1, . . . , qn, sn P N. Here, Mq,s is the space of q ˆ s matrices with complex entries,

regarded as a space of operators on the pq ` sq-dimensional Hilbert space of the form
«

0 ˚

0 0

ff
,

where the diagonal blocks have size q ˆ q and s ˆ s. The operator spaces Mq,1 and M1,q are called

the q-dimensional column operator Hilbert space and the q-dimensional row operator Hilbert space,

respectively. The space Mq,q of q ˆ q matrices will be simply denoted by Mq, and the n-fold 8-sum

of Mq,s by itself will be denoted by ℓn8pMq,sq. It is known that the class of finite-dimensional injective

operator spaces coincides with the class of finite-dimensional ternary rings of operator; see [57]. The

finite-dimensional commutative ternary rings of operators are precisely the spaces ℓn8 for n P N [6,

Subsection 8.6.4], which are precisely the finite-dimensional injective minimal operator spaces.

Definition 3.1 (Injective classes). We say that a family of finite-dimensional operator spaces is an

injective class of operator spaces if it is one of the following families

- I1 :“ tℓn8unPN,

- Iq :“ tℓn8pMqqunPN,

- Ic :“ tℓn8pMq,1qun,qPN,

- Ie :“ tMquqPN, and

- Iinj “ tMq1,s1
‘8 ¨ ¨ ¨ ‘8 Mqn,snun,q1,s1,...,qn,snPN.

If I is any of the classes in Definition 3.1, then I satisfies the assumptions of Theorem 2.7. Thus, I is a

stable amalgamation class and xIy is a stable Fräıssé class with modulus ̟ pδq “ δ. The corresponding

classes rIs can be described as follows.

Definition 3.2 (Spaces locally approximated by injective classes).

(a) rI1s is the class of minimal operator spaces, which can be identified with the class of Banach spaces.

(b) rIqs is the class of q-minimal operator spaces (see [34]).

(c) rIcs is the class of operator sequence spaces (see [33]).

(d) rIes “ rIinjs is the class of exact operator spaces (see [52], [54, Theorem 17.1]).

Observe that Banach spaces (endowed with their minimal operator space structure) coincide with

1-minimal operator spaces. Their limits are the following.

Example 3.3.

‚ FLim I1 is the Gurarij space G [4, 25, 32, 39].

‚ FLim Iq is the q-minimal Gurarij space Gq [37, §6.5].

‚ FLim Ic is the Gurarij column space GC [37, §6.3].

‚ FLim Ie is the noncommutative Gurarij space NG [37, §8.1].

Observe that the Gurarij space G coincides with G1 in the notation of Example 3.3. In fact, the

original definition of the Gurarij space considered by Gurarij [25] and Lusky [39, 40, 42] looks somewhat
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different. The original characterization of G is as the unique separable Banach space satisfying the

following extension property: for every finite-dimensional Banach spaces E Ď F , linear contraction

φ : E Ñ G, and ε ą 0, there exists an extension φ̂ : F Ñ G satisfying ||φ̂|| ă 1 ` ε. The fact that

such a definition is equivalent to the one given in Example 3.3 is proved in [4]. Similarly, the original

notion of noncommutative Gurarij space considered by Oikhberg in [46] and proved to be unique in

[36] is the following: a separable exact operator space NG such that for every finite-dimensional exact

operator spaces E Ď F , linear complete contraction φ : E Ñ NG, and ε ą 0, there exists an extension

φ̂ : F Ñ G satisfying ||φ̂||cb ă 1 ` ε. The fact that such a definition is equivalent to the one given in

Example 3.3 is established in [36].

3.2. The approximate Ramsey property and extreme amenability. Fix q, s P N. The goal of

this part is to prove that the classes I of finite-dimensional exact operator spaces introduced above

satisfy the stable Ramsey property with modulus ̟ pδq “ δ. Since I and its generated class xIy are

both stable Fräıssé classes, Proposition 2.12 tell us that it suffices to prove the discrete approximate

Ramsey property of each I.

Lemma 3.4 (ARP of tℓd8pMq,squdPN). Fix q, s P N. For every d,m, r P N and ε ą 0 there exists

n P N such that every r-coloring of Embpℓd8pMq,sq, ℓn8pMq,sqq has an ε-monochromatic set of the form

γ ˝ Embpℓd8pMq,sq, ℓm8pMq,sqq for some γ P Embpℓm8pMq,sq, ℓn8pMq,sqq.

Similarly as it was done for the proof of the (ARP) of the class of Banach spaces tℓn8un in [3], rather

than proving Lemma 3.4 directly, we will establish its natural dual statement, which is Lemma 3.5

below. Given two operator spaces X and Y , let CQpX,Y q be the set of completely contractive quotient

mappings φ : X Ñ Y , i.e. φ : X Ñ Y such that each amplification φpnq is a contractive quotient

mapping [13, §2.2]. Notice that this is equivalent to the assertion that the dual map φ˚ : Y ˚ Ñ X˚ is

a completely isometric embedding. We denote by Ts,q the operator space dual of Mq,s. This can be

identified as the space of sˆ q matrices with matrix norms given by the normalized Hilbert–Schmidt

norm [13, §1.2]. The duality between Mq,s and Ts,q is implemented by the paring pα, βq ÞÑ Trpαβq,

there Tr denotes the normalized trace for sˆs matrices. One can then canonically identify the operator

space dual of ℓd8pMq,sq with the 1-sum ℓd1pTs,qq of d copies of Ts,q. From this it is easy to see that

Lemma 3.4 and Lemma 3.5 below are equivalent by duality.

Lemma 3.5. Fix q, s P N. For every d,m, r P N and ε ą 0 there exists n P N such that every

r-coloring of CQpℓn1 pTs,qq, ℓd1pTs,qqq has an ε-monochromatic set of the form CQpℓm1 pTs,qq, ℓd1pTs,qqq ˝ γ

for some γ P CQpℓn1 pTs,qq, ℓm1 pTs,qqq.

In order to prove Lemma 3.5 we will need the following fact about linear complete isometries, which

is an immediate consequence of [36, Lemma 5.17]; see also [10, Lemma 3.6].

Lemma 3.6. Suppose that q, s, q1, s1, . . . , qn, sn P N, and φi : Mq,s Ñ Mqi,si
are completely contractive

linear maps for i “ 1, 2, . . . , n. Then the linear map φ : Mq,s Ñ Mq1,s1
‘8 ¨ ¨ ¨ ‘8 Mqn,sn, x ÞÑ

pφ1pxq, . . . , φnpxqq is a complete isometry if and only if φi is a complete isometry for some i ď n.

The proof of Lemma 3.5 relies on the Dual Ramsey Theorem 2.17 by Graham and Rothschild.

Proof of Lemma 3.5. Fix d,m, r P N and ε ą 0. We identify a linear map φ from ℓn1 pTs,qq to ℓd1pTs,qq

with a dˆ n matrix rφijs where φij : Ts,q Ñ Ts,q is a linear map. It follows from (the dual of) Lemma

3.6 that φ is a completely contractive quotient mapping if and only if every row of rφijs has an entry
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that is a surjective complete isometry of Ts,q, and every column is a complete contraction from Ts,q

to ℓd1pTs,qq. This implies that if a column has an entry that is a surjective complete isometry of Ts,q,

then all the other entries of the column are zero. Let now P be a finite set of complete contractions

from Ts,q to ℓd1pTs,qq—which we regard as d-dimensional column vectors with entries from Ts,q—with

the following properties:

(i) the zero map belongs to P;

(ii) for every i ď d the canonical embedding of Ts,q into the i-th coordinate of ℓd1pTs,qq belongs to P;

(iii) for every nonzero complete contraction φ : Ts,q Ñ ℓd1pTs,qq there exists a nonzero element φ0 of

P such that }φ´ φ0}cb ă ε and }φ0}cb ă }φ}cb.

Fix ε0 ą 0 small enough and a finite ε0-dense subset U of the group of automorphisms of Ts,q.

Let Q be the (finite) set of linear complete isometries from ℓd1pTs,qq to ℓm1 pTs,qq such that every row

contains at most one nonzero entry, every column exactly one nonzero entry, and every nonzero entry

is an automorphism of Ts,q that belongs to U . Fix any linear order ă on Q, and a linear order on P

with the property that

φ ă φ1 whenever }φ}cb ă
››φ1

››
cb

. (8)

Endow QˆP with the corresponding antilexicographic order. An element of Epipn,Pq is an n-tuple v “

pv1, . . . , vnq of elements of P. We associate with such an n-tuple the element αv of CQpℓn1 pTs,qq, ℓd1pTs,qqq

whose representative matrix has vi as i-th column for i “ 1, 2, . . . , n. Similarly an element of Epipn,Qˆ

Pq is an n-tuple pB,wq “ pB1, w1, . . . , Bn, wnq. We associate with such an n-tuple the element αpB,wq

of CQpℓn1 pTs,qq, ℓm1 pTs,qqq with Biwi as i-th column for i “ 1, 2, . . . , n. Suppose now that n P N is

obtained from P and Q ˆ P by applying the dual Ramsey theorem, Theorem 2.17. We claim that

such an n satisfies the desired conclusions. Suppose that c is an r-coloring of CQpℓn1 pTs,qq, ℓd1pTs,qqq.

The map v ÞÑ αv from Epipn,Pq to CQpℓn1 pTs,qq, ℓd1pTs,qqq induces an r-coloring on Epipn,Pq. By the

choice of n there exists an element pB,wq of Epipn,Q ˆ Pq such that any rigid surjection from n to

P that factors through pB,wq has a fixed color i P r. To conclude the proof it remains to show the

following.

Claim 3.6.1. The set of completely contractive quotient mappings from ℓn1 pTs,qq to ℓd1pTs,qq that factor

through αpB,wq is ε-monochromatic.

Proof of Claim: This will follow once we show that, given any ρ P CQpℓm1 pTs,qq, ℓd1pTs,qqq there exists

τ P EpipQ ˆ P,Pq such that
›››ατpB,wq ´ ρ ˝ αpB,wq

›››
cb

ď ε, where we denoted by τpB,wq the element

pτpB1, w1q, . . . , τpBn, wnqq of Epipn,Pq. If ρ has representative matrix A, then this is equivalent to the

assertion that, for every i ď n, τpBi, wiq has cb-distance at most ε from ABiwi. We proceed to define

such a rigid surjection τ from QˆP to P. By the structure of completely contractive quotient mappings

from ℓm1 pTs,qq to ℓd1pTs,qq recalled above, there exists A: P Q such that
›››AA: ´ Idℓd

1
pTs,qq

›››
cb

ď ε,

provided that ε0 is small enough (depending only from ε). Define now τ : Q ˆ P Ñ P by letting, for

B P Q and w P P, τpB,wq “ 0 if w “ 0, τpB,wq “ w if B “ A:, and otherwise τpB,wq P P such that

0 ă }τpB,wq}cb ă }ABw}cb and }τpB,wq ´ABw}cb ă ε. It is clear from the definition that τpB,wq

has distance at most ε from ABw. We need to verify that τ is indeed a rigid surjection from Q ˆ P to

P. Observe that τ is onto, and the pairs pB, 0q are the only elements of Q ˆ P that are mapped by τ

to zero. It is therefore enough to prove that, for every w P P, pA:, wq is the minimum of the preimage

of w under τ . Suppose that pB1, w1q is an element of the preimage of w under τ . Then by definition
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of τ we have that

}w}cb ă
››ABw1

››
cb

ď
››w1

››
cb

.

By our assumptions on the ordering of P, it follows that w ă w1 and hence pA:, wq ă pB1, w1q. This

concludes the proof. � �

Using the general facts about the approximate Ramsey property from Proposition 2.12, one can

bootstrap the approximate Ramsey property from the class considered in Lemma 3.5 to other classes of

operator spaces. In fact one can obtain the compact stable Ramsey property with modulus ̟ pδq “ δ;

see Definition 2.9.

Theorem 3.7. The following classes of finite-dimensional operator spaces satisfy the compact (SRP)

with modulus ̟pδq “ δ:

(1) for every q P N, the injective class Iq and the class xIqy of finite-dimensional q-minimal operator

spaces, and in particular the class of finite-dimensional Banach spaces.

(2) The injective class Ic and the class xIcy of finite-dimensional operator sequence spaces.

(3) The classes Ie, Iinj and the class xIey “ xIinjy of finite-dimensional exact operator spaces.

Proof. In each of the cases, it is enough to verify that the given class satisfies the discrete (ARP) in

view of Proposition 2.10 and the equivalence of (1) and (5) in Proposition 2.12.

(1): It follows from Lemma 3.4 for q “ r that Iq satisfies the discrete (ARP).

(2): Lemma 3.4 for s “ 1 is the discrete (ARP) of Ic.

(3): We verify that the class of finite dimensional exact operator spaces xIey satisfies the (ARP). By

the equivalence of (1) and (6) in Proposition 2.12, it suffices to show that for every positive integer

p, q, r such that p ď q, and every ε ą 0 there is some finite-dimensional exact operator space Z such

that every r-coloring of EmbpMp, Zq ε-stabilizes on γ ˝ EmbpMp,Mqq for some γ P EmbpMq, Zq. Now,

Mp and Mq are q-minimal, so by (1) there is such a Z which is a finite-dimensional q-minimal operator

space. Since every q-minimal operator space is exact, this concludes that xIey satisfies the (ARP). It

follows from the equivalence (1) and (5) in Proposition 2.12 that both Ie and Iinj also satisfies the

(ARP). �

Theorem 3.8 below extends the work on the Gurarij space from [3, Theorem 2.5]. It is a consequence

of the KPT correspondence as in Proposition 2.16 and corresponding approximate Ramsey properties

in Theorem 3.7. It shows that the limits of the Fräıssé classes mentioned in Definition 3.3 have

extremely amenable automorphism groups.

Theorem 3.8. The following operator spaces have extremely amenable automorphism groups:

(1) each q-minimal Gurarij space Gq, and in particular the Gurarij space G.

(2) The column Gurarij space CG.

(3) The noncommutative Gurarij space NG.

Remark 3.9. One can also give a direct, quantitative proof of the ARP for finite-dimensional Banach

spaces using Lemma 3.5 when s “ q “ 1 and the injective envelope construction [6, Subsection

4.2]. Such a proof yields an explicit bound of the Ramsey numbers for the class of finite-dimensional

Banach spaces in terms of the Ramsey numbers for the Dual Ramsey Theorem. Furthermore the same

argument applies with no change in the case of real Banach spaces, yielding extreme amenability of

the group of surjective linear isometries of the real Gurarij space (see [2, Appendix A]).
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3.3. Operator spaces with a distinguished functional.

3.3.1. Fräıssé limits of R-operator spaces. The natural geometric object associated with a Banach

space X is the unit ball BallpX˚q of the dual of X, i.e. the w˚-compact convex symmetric set of

contractive linear functionals on X. As discussed in the introduction, the noncommutative analog of

such a correspondence involves the notion of matrix functionals. Given an operator space X, a matrix

functional on X is a linear function from X to Mq,rpCq for some q, r P N. The space CBallpX˚q is

the sequence pKq,rqq,rPN, where Kq,r is the w˚-compact convex set of completely contractive matrix

functionals from X to Mq,rpCq. The space CBallpX˚q is endowed with a notion of rectangular matrix

convex combinations that makes it a compact rectangular matrix convex set [19]. Furthermore any

compact rectangular convex set arises in this way. It should be clear from this that matrix functionals

provide the right noncommutative analog of functionals on Banach spaces.

More generally, suppose that R is a separable nuclear operator space, that is, the identity map

of R is the pointwise limit of completely contractive maps that factor through finite-dimensional

injective operator spaces. When R is in addition a minimal operator space (i.e. a Banach space),

this is equivalent to the assertion that R is a Lindenstrauss Banach space [6, Subsection 8.6.4]. A

classical result of Wojtaszczyk [59] asserts that the separable Lindenstrauss spaces are precisely the

separable Banach spaces that are isometric to the range of a contractive projection on the Gurarij

space G. The noncommutative analog of such a result asserts that the separable nuclear operator

spaces are precisely the separable operator spaces that are completely isometric to the range of a

completely contractive projection on the noncommutative Gurarij space [35]. A similar result holds

for operator sequence spaces in terms of the column Gurarij space [37, Subsection 6.5]. Notice that

injective finite-dimensional operator spaces are always nuclear, but the converse does not hold. The

following result can be found in [37, §6.5, §6.6].

Proposition 3.10. Let R be a separable operator space.

(1) Suppose that R is q-minimal. Then R is nuclear if and only if it is Iq-nuclear, i.e. the identity on

R is the pointwise limit of completely contractive maps that factor through some space in Iq. In

particular, nuclear q-minimal separable operator spaces belong to rIqs.

(2) Suppose that R is an operator sequence space. Then R is nuclear if and only it is Ic-nuclear, i.e.

the identity on R is the pointwise limit of completely contractive maps that factor through some

space in Ic. In particular, nuclear separable sequence operator spaces belong to rIcs.

Definition 3.11 (R-functionals). For an operator space X and a separable nuclear operator space

R, an R-functional on X is a completely bounded linear operator from X to R. Let CCpX,Rq be the

space of completely contractive R-functionals on X, regarded as a Polish space with the topology of

pointwise convergence. Let AutpXq y CCpX,Rq be the continuous action pα, sq ÞÑ s ˝ α´1. Finally,

given s P CCpX,Rq, let AutpX, sq Ď AutpXq be the stabilizer of s with respect to such an action.

Recall that given a family A of operator spaces and a separable operator space R, let AR be the

collection of R-operator spaces X “ pX, sXq where X P A and sX : X Ñ R is a complete contraction.

Proposition 3.12. Let I be an injective class of operator spaces as in Definition 3.1, and let R be a

separable operator space. Then

(1) IR is a stable amalgamation class with stability modulus ̟pδq “ 2δ when R P I.

(2) xIyR is a stable Fräıssé class with stability modulus ̟pδq “ 2δ.
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(3) Suppose that in addition R is nuclear. Then the Fräıssé limit of xIyR is the R-operator space

pFLim I,ΩR
FLim Iq.

Proof. This is a consequence of Proposition 2.8. Obviously both IR and xIyR have a minimal element,

so it suffices to show that these classes satisfy the (SAP) with modulus 2δ. Every finite-dimensional

subspace of R embeds into an element of xIy. Consequently, (1) and (2) immediately follow from

Proposition 2.8 (1). (3) is also consequence of Proposition 2.8 and the fact that FLim I “ FLimxIy. �

The R-functional ΩR
FLim I as in Proposition 3.12 is called the generic completely contractive R-

functional on FLim I. The name is justified by the fact that the AutpFLim Iq-orbit of ΩR
FLim I is a

dense Gδ subset of the space CCpFLim I, Rq of completely contractive R-functionals on FLim I.

3.3.2. KPT correspondence and the approximate Ramsey property of R-operator spaces. We present

the approximate Ramsey properties of several classes of R-operator spaces, and the corresponding

extreme amenability of the automorphism group of their Fräıssé limits.

Theorem 3.13. The following classes of finite-dimensional R-operator spaces satisfy the compact

(SRP) with stability modulus ̟pδq “ 2δ:

(1) for a q-minimal separable nuclear operator space R, the class IR
q , if R is finite dimensional, and

the class xIqyR of finite-dimensional q-minimal R-operator spaces; in particular, for a separable

Lindenstrauss space R, the class of R-Banach spaces (which recovers [3, Theorem 2.41]).

(2) For a separable nuclear operator sequence space R, the class IR
c , if R is finite dimensional, and

the class xIcyR of finite-dimensional R-operator sequence spaces.

(3) For a separable nuclear operator space R, the class IR
e , if R is finite dimensional, and the class

xIeyR of finite-dimensional exact R-operator spaces.

Proof. We have seen in Theorem 3.7 that the injective classes Iq, Ic, Ie and Iinj, and the corresponding

completions xIqy, xIcy and xIey “ xIinjy satisfy the compact (SRP) with modulus δ, so it follows from

Proposition 2.13 (1) that the corresponding R-classes also satisfy the compact (SRP) with modulus

̟pδq “ 2δ (here we are using that for classes satisfying the (SAP) with that modulus, the compact

(SRP) and the (SRP) are equivalent). �

From Theorem 3.13 and the characterization of extreme amenability in Proposition 2.16 we obtain

new extremely amenable groups, extending the work done in [3, Theorem 2.39] for the Gurarij space,

and the trivial space R “ t0u done above in Theorem 3.8.

Corollary 3.14. The following Polish groups are extremely amenable:

(1) The stabilizer of the generic contractive R-functional on the Gurarij space for any separable Lin-

denstrauss Banach space R.

(2) The stabilizer of the generic completely contractive R-functional on the q-minimal Gurarij space

for any separable q-minimal nuclear operator space R.

(3) The stabilizer of the generic completely contractive R-functional on the column Gurarij space for

any separable nuclear operator sequence R.

(4) The stabilizer of the generic completely contractive R-functional on the noncommutative Gurarij

space for any separable nuclear operator space R.

Again, the same proof shows that (1) of Corollary 3.14 also holds when one considers the real

Gurarij space and any real separable Lindenstrauss space R.
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4. The Ramsey property of noncommutative Choquet simplices and operator systems

In this section we establish the approximate (dual) Ramsey property for noncommutative Choquet

simplices with a distinguished point. We will then apply this to compute the universal minimal flows

of the automorphisms group of the noncommutative Poulsen simplex. This will be done by studying

operator systems with a distinguished ucp map to a fixed nuclear separable operator system R (R-

operator systems).

4.1. Choquet simplices and operator systems. The correspondence between compact convex sets

and function systems admits a natural noncommutative generalization. A compact matrix convex set

is a sequence K “ pKnq of sets Kn Ă MnpV q for some topological vector space V that is matrix convex

[58, Definition 1.1]. This means that whenever αi P Mqi,q and vi P Kqi
are such that α˚

1α1`¨ ¨ ¨`α˚
qαq “

1, then the matrix convex combination α˚
1v1α1 ` ¨ ¨ ¨ ` α˚

q vqαq belongs to Kq. A continuous matrix

affine function φ : K Ñ T between compact matrix convex sets is a sequence of continuous functions

φn : Kn Ñ Tn that is matrix affine in the sense that it preserves matrix convex combinations. The

group AutpKq of matrix affine homeomorphisms of K is a Polish group when endowed with the

compact-open topology.

To each operator system X one can canonically assign a compact matrix convex set: the matrix

state space SpXq. This is the sequence pSnpXqq, where SnpXq Ă MnpX˚q is the space of all ucp maps

from X to Mn. Conversely, to a compact convex set K one can associate an operator system ApKq

of matrix-affine functions from K to R. It is proved in [58, Section 3] that these constructions are

the inverse of each other, and define an equivalence between the category of operator systems and

ucp maps, and the category of compact matrix convex sets and continuous matrix affine functions. In

particular if X is an operator system, then the group AutpXq of surjective unital complete isometries

on X can be identified with the group AutpKq of matrix affine homeomorphisms of the matrix state

space K of X. The notions of matrix extreme point and matrix extreme boundary can be defined in

the setting of compact matrix convex sets by using matrix convex combinations [58].

Recall that an operator system X is called nuclear if its identity map is the pointwise limit of ucp

maps that factor through finite-dimensional injective operator systems. When X “ ApKq, this is

equivalent to the assertion that the state space K of X is a Choquet simplex. The matrix state spaces

of nuclear operator systems can be seen as the noncommutative generalization of Choquet simplices.

The natural noncommutative analog of the Poulsen simplex is studied in [37], where it is proved that

finite-dimensional exact operator systems form a Fräıssé class. The matrix state space NP “ pNPnq

of the corresponding Fräıssé limit ApNPq is a nontrivial noncommutative Choquet simplex with dense

matrix extreme boundary, which is called the noncommutative Poulsen simplex in [37, 38].

One can also define a sequence of structures pPpqqq for q P N that interpolates between the Poulsen

simplex and the noncommutative Poulsen simplex, in the context of q-minimal operator systems. An

operator system is q-minimal if it admits a complete order embedding into unital C*-algebra CpK,Mqq

for some compact Hausdorff space K [60]. Here we regard the unital selfadjoint subspaces of CpK,Mqq

as operator systems, called q-minimal operator systems or Mq-systems. For q “ 1, these are precisely

the function systems. A q-minimal operator system X can be completely recovered from the portion of

the matrix state space only consisting of SkpXq for k “ 1, 2, . . . , q. Conversely a sequence pK1, . . . ,Kqq

of compact convex sets Kj Ă MjpV q closed under matrix convex combinations α˚
1v1α1 ` ¨ ¨ ¨ `α˚

nvnαn

for αi P Mqiq and vi P Mqi
and qi ď q such that α˚

1α1 ` ¨ ¨ ¨ ` α˚
nαn “ 1, uniquely determines a
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q-minimal operator system ApK1, . . . ,Kqq. The finite-dimensional q-minimal operator systems form

a Fräıssé class [37, Section 6.7]. The matrix state space Ppqq “ pP
pqq
1 , . . . ,P

pqq
q q of the corresponding

limit ApPpqqq is the q-minimal Poulsen simplex. The model-theoretic properties of ApPq, ApNPq, and

ApPpqqq have been studied in [20].

As we mentioned in the Subsection 2.1, we regard operator systems as objects of the category

Osy which has ucp maps as morphisms. The finite-dimensional injective objects in this category are

precisely the finite 8-sums of copies of Mq, which are also the finite-dimensional C*-algebras. The

notion of isomorphism in this category coincides with complete order isomorphism. The Gromov-

Hausdorff pseudometric of two finite-dimensional operator systems X,Y is the infimum of ε ą 0

such that there exist ucp maps f : X Ñ Y and g : Y Ñ X such that }g ˝ f ´ IdX}cb ă ε and

}f ˝ g ´ IdY }cb ă ε. If X and Y are operator systems, then UCPpX,Y q is the space of ucp maps from

X to Y , and the automorphism group AutpXq is the group of surjective unital complete isometries

from X to itself. Both AutpXq and UCPpX,Y q are Polish spaces when endowed with the topology

of pointwise convergence. There is a natural continuous action of AutpXq on UCPpX,Y q defined by

pα, sq ÞÑ s ˝ α´1. In particular when Y “ Mq we have that UCPpX,Y q “ SqpXq.

Recall that given a class of operator systems A, we denote by rAs the collection of operator sys-

tems E such that every finite-dimensional operator system X Ď E is a limit (with respect to the

Gromov-Hausdorff pseudometric) of subspaces of operators systems in A, and by xAy the class of

finite-dimensional operator systems in rAs.

Definition 4.1 (Injective classes). We say that a family of finite-dimensional operator systems is an

injective class of operator systems if it is one of the families tℓn8unPN, tℓn8pMqqunPN, or tMquqPN.

As mentioned in Theorem 2.7, all the classes of operator systems considered in Definition 4.1 are

stable Fräıssé classes with modulus ̟ pδq “ 2δ. The corresponding generating classes are well-known.

Definition 4.2 (Spaces locally approximated by injective classes).

(a) rtℓn8unPNs is the class of function systems.

(b) rtℓn8pMqqunPNs is the class of q-minimal operator systems (see [60]).

(c) rtMquqPNs is the class of exact operator systems (see [29]).

And the corresponding limits are the following.

Example 4.3.

‚ FLimtℓn8unPN is the function system ApPq associated with the Poulsen simplex P (see [37, Section

6.3]).

‚ FLimtMquqPN is the operator system ApNPq associated with the noncommutative Poulsen simplex

NP (see [37, Section 8.2]).

‚ FLimtℓn8pMqqunPN is the operator system ApPpqqq associated with the q-minimal Poulsen simplex

Ppqq (see [37, Section 6.7]).

The main goal of this section is to compute the universal minimal flow of the group AutpNPq of

matrix affine homeomorphisms of the noncommutative Poulsen simplex NP, extending the work in

[3, Theorem 3.10] for its commutative version, the Poulsen simplex P. Precisely, we will prove that

the universal minimal compact AutpNPq-space is the canonical action of AutpNPq on the space NP1

of (scalar) states on ApNPq.
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Similarly as in the case of Banach spaces and operator spaces (Section 3.3), we need to consider

operator systems with a distinguished (matrix) state. Suppose that X is an operator system. Recall

that a state on X is a ucp map from X to C. More generally, an Mn-state is a ucp map from X to Mn.

Even more generally, if R is any separable nuclear operator system, we call a ucp map from X to R an

R-state on X. As observed above, the space UCPpX,Rq of R-states on X is a Polish space endowed

with a canonical continuous action of AutpXq. An R-operator system is a pair X “ pX, sXq of a

operator system X and an R-state sX on X. In the following, we regard UCP pX,Rq as an Aut pXq

space with respect to the canonical action Aut pXq y UCP pX,Rq given by pα, sq ÞÑ s ˝ α´1. We let

AutpX, sXq be the stabilizer of sX P UCP pX,Rq in AutpXq. Given a family A of operator systems,

let AR be the collection of R-operator spaces pX, sXq where X P A.

Proposition 4.4. Let I be an injective class of operator systems as in Definition 4.1, and suppose

that R is a separable operator system such that R P rIs.

(1) IR is a stable amalgamation class with stability modulus ̟pδq “ 3δ.

(2) xIyR is a stable Fräıssé class with stability modulus ̟pδq “ 3δ.

(3) Suppose in addition that R is nuclear. Then the Fräıssé limit of xIyR is the R-operator system

pFLim I,ΩR
FLim Iq.

As in the case of operator spaces, the R-state ΩR
FLim I as in Proposition 4.4 is called the generic

R-state on FLim I. This is the unique R-state on ΩR
FLim I whose AutpFLim Iq-orbit is a dense Gδ subset

of the space UCPpFLim I, Rq.

4.2. Approximate Ramsey property and extreme amenability. For the rest of this section we

fix q, k P N. We identify as in Subsection 3.2 the dual of ℓd8pMqq with ℓd1pTqq. We denote by Tr the

canonical normalized trace of q ˆ q matrices. The isomorphism between Tq and the dual of Mq is

induced by the pairing

xα, βy ÞÑ Tr pαβq .

A linear map η : Mq Ñ Mq is unital completely positive (ucp) if and only if its dual η˚ : Tq Ñ Tq is

trace-preserving and completely positive. (Such maps are called quantum channels in the quantum

information theory literature; see [24, §4.1].) Thus, η is a complete order embedding if and only if η˚

is a trace-preserving completely positive completely contractive quotient mapping.

Let us consider now ℓd8 pMqq. Every state λ on ℓd8, which can be seen as a positive element

pλ1, . . . , λdq of ℓd1 of norm 1, induces a normalized trace Trλ on ℓd1 pTqq defined by

Trλ pa1, . . . , adq “ λ1Tr pa1q ` ¨ ¨ ¨ ` λdTr padq .

We also let Tr be the trace on ℓd1 pTqq defined by

Tr pa1, . . . , adq “ Tr pa1q ` ¨ ¨ ¨ ` Tr padq .

Definition 4.5. Adopting the notations above, for n, d, q ě 1 we say that a linear map φ : ℓn1 pMqq Ñ

ℓd1 pMqq is trace-preserving if, for every state λ on ℓd8, and for every a P ℓn1 pMqq, Trλ pφ paqq “ Tr paq.

It is easy to see that a linear map η : ℓd8 pMqq Ñ ℓn8 pMqq is completely positive and unital if and

only if its dual map η˚ : ℓn1 pMqq Ñ ℓd1 pMqq is completely positive and trace-preserving. Thus, η is a

complete order embedding if and only if η˚ is a trace-preserving completely positive complete quotient

mapping.
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Let σd be the Mq-state on ℓd8pMqq mapping px1, . . . , xdq to xd. A linear map η : ℓd8pMqq Ñ ℓn8pMqq

has the property that σn˝η “ σd if and only if η˚p0, . . . , 0, xq “ p0, . . . , 0, xq for every x P Tq. We denote

by TPCQMq pℓn1 pTqq, ℓd1pTqqq the space of trace-preserving completely positive completely contractive

quotient mappings φ from ℓn1 pTqq to ℓd1pTqq such that φp0, . . . , 0, xq “ p0, . . . , 0, xq for every x P Tq.

Lemma 4.6. Suppose that ψ1, . . . , ψd´1, φd : Mq Ñ Mq are completely positive linear maps such that

}y ´ 1} ă ε, where y “ ψ1p1q ` ¨ ¨ ¨ ` ψd´1p1q ` φdp1q. Then there exists a completely positive map

ψd : Mq Ñ Mq such that

ψ1p1q ` ¨ ¨ ¨ ` ψd´1p1q ` ψdp1q “ 1

and }ψd ´ φd} ă ε.

Proof. Fix any state s on Mq and define ψdpxq “ φdpxq ` spxqp1 ´ yq. �

Proposition 4.7. Fix q P N. For any d,m, r P N and ε ą 0 there exists n P N such that

for any r-coloring of TPCQMq pℓn1 pTqq, ℓd1pTqqq there exists γ P TPCQMq pℓn1 pTqq, ℓm1 pTqqq such that

TPCQMq pℓm1 pTqq, ℓd1pTqqq ˝ γ is ε-monochromatic.

Proof. The proof is analogous to the proof of Lemma 3.5. Fix d,m, r P N and ε ą 0. We identify a

linear map φ from ℓn1 pMqq to ℓd1pMqq with a dˆ n matrix rφijs where φij : Tq Ñ Tq is a linear map. It

follows from (the dual of) Lemma 3.6 that φ P TPCQMq pℓn1 pTqq, ℓd1pTqqq if and only if

‚ every row of rφijs has an entry that is an automorphism of Tq,

‚ every column is a trace-preserving completely positive completely contractive map from Tq to ℓd1pTqq,

‚ the last column is p0, 0, . . . , 0, IdTq q, where IdTq is the identity map of Tq.

Fix ε0 P p0, εq small enough, and a finite ε0-dense subset U of the group of automorphisms of

Tq containing the identity map of Tq. The dual statement of Lemma 4.6 and the small perturbation

lemma [54, Lemma 2.13.2] show that one can find a finite set P of trace-preserving completely positive

completely contractive maps from Tq to ℓd1pTqq with the following properties:

(1) for every i ď d the canonical embedding of Tq into the i-th coordinate of ℓd1pTqq belongs to P.

(2) For every trace-preserving completely positive completely contractive map v “ pv1, . . . , vdq : Tq Ñ

ℓd1pTqq such that pv1, . . . , vd´1q is nonzero, there is a trace-preserving completely positive completely

contractive map w “ pw1, . . . , wdq in P such that }w ´ v}cb ă ε0, pw1, . . . , wd´1q is nonzero, and

}pw1, . . . , wd´1q}cb ă }pv1, . . . , vd´1q}cb.

Let Q be the (finite) set of trace-preserving completely positive completely contractive quotient

mappings from ℓd1pTqq to ℓm1 pTqq such that the last row is p0, 0, . . . , IdTq q, every column contains

exactly one nonzero entry, every row contains at most one nonzero entry, and every nonzero entry

is an automorphism of Tq that belongs to U . Fix any linear order on Q, and a linear order on P

with the property that v ă w whenever }pv1, . . . , vd´1q}cb ă }pw1, . . . , wd´1q}cb. Endow Q ˆ P with

the corresponding antilexicographic order. Suppose now that n P N is obtained from P and Q ˆ P

by applying the dual Ramsey Theorem 2.17. We claim that n ` 1 satisfies the desired conclusions.

An element of Epipn,Pq is a tuple v “ pvp1q, . . . , vpnqq of elements of P. We associate with such

a tuple the element αv of TPCQMq pℓn`1
1 pTqq, ℓd1pTqqq whose i-th column is vpiq for i “ 1, 2, . . . , n

and the pn ` 1q-th column is p0, 0, . . . , IdTq q. Similarly an element of Epipn,Q ˆ Pq is an n-tuple

pB, vq “ pB1, v1, . . . , Bn, vnq. We associate with such a tuple the completely positive completely

contractive quotient mapping αpB̄,v̄q from ℓn`1
1 pTqq to ℓm1 pTqq whose i-th column is Bivi for i ď n,

and p0, 0, . . . , 0, IdTq q for i “ n ` 1. Suppose that c is an r-coloring of TPCQMq pℓn`1
1 pTqq, ℓd1pTqqq.
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The identification of Epipn,Pq with a subspace of TPCQMq pℓn`1
1 pTqq, ℓd1pTqqq described above induces

an r-coloring on Epipn,Pq. By the choice of n there exists an element pB,wq of Epipn,Q ˆ Pq

such that any rigid surjection from n to P that factors through pB,wq has a fixed color i P r. To

conclude the proof, it remains to show that the set of elements of TPCQMq pℓn`1
1 pTqq, ℓd1pTqqq that factor

through αpB,wq is ε-monochromatic. By our choice of n this will follow once we show that, given any

ρ P TPCQMq pℓm1 pTqq, ℓd1pTqqq, there exists τ P EpipQ ˆ P,Pq such that
›››ατ˝pB,wq ´ ρ ˝ αpB,wq

›››
cb

ď ε.

Here we denoted by τ ˝pB,wq the rigid surjection from n to P that one obtains by composing pB,wq—

regarded as a rigid surjection—and τ . If ρ has representative matrix A, this is equivalent to the

assertion that for every i ď n, }ABiwi ´ τpBi, wiq}cb ď ε. We proceed to define such a rigid surjection

τ from Q ˆ P to P. By the structure of completely positive completely contractive quotient mappings

from ℓm1 pTqq to ℓd1pTqq recalled above, there exists A: P Q such that
››AA: ´ Idℓ1pTqq

››
cb

ď ε, provided

that ε0 is small enough. Define now τ : Q ˆ P Ñ P by letting, for B P Q and w “ pw1, . . . , wdq P P,

if ABw “ v “ pv1, . . . , vdq, τ pB,wq :“ rv “ prv1, . . . , rvdq such that:

‚ if B “ A: or if v “ p0, 0, . . . , 0, vdq, then rv “ w;

‚ otherwise, rv is an element of P such that }rv ´ v}cb ď ε, prv1, . . . , rvd´1q is nonzero, and we have that

}prv1, . . . , rvd´1q}cb ă }pv1, . . . , vd´1q}cb.

It is clear from the definition that }τpB,wq ´ABw}cb ď ε for every pB,wq P Q ˆ P. We need to

verify that τ is indeed a rigid surjection from QˆP to P. Observe that τ is onto. Fix rv “ prv1, . . . , rvdq P

P. If rv “ p0, . . . , 0, rvdq, then the least element of Q ˆ P that is mapped by τ to rv is pB, rvq, where B

is the least element of Q. If prv1, . . . , rvd´1q is not the zero vector, then the least element of Q ˆ P that

is mapped by τ to rv is
`
A:, rv

˘
. Indeed, suppose that pB,wq is an element of the preimage of rv under

τ such that B is different from A:. Set ABw “ v “ pv1, . . . , vdq. By definition of τ we have that

}prv1, . . . , rvd´1q}cb ă }pv1, . . . , vd´1q}cb ď }pw1, . . . , wd´1q}cb .

Therefore by definition of the order on P and on Q ˆ P we have that rv ă w and pA:, rwq ă pB,wq.

This concludes the proof that the least element of Q ˆ P that is mapped by τ to rv is pA:, rvq. These

remarks clearly imply that τ is a rigid surjection. �

The following result can be proved from Proposition 4.7 similarly as Theorem 3.13.

Theorem 4.8. The following classes of finite-dimensional R-operator systems satisfy the stable Ram-

sey property with modulus ̟pδq “ 3δ:

(1) for every q P N the class tpℓd8pMqq, sdqudPN of Mq-operator systems, where sdpx1, . . . , xdq “ xd.

(2) For every q P N and q-minimal separable nuclear operator system R, the class of finite-dimensional

q-minimal R-operator systems.

(3) For every separable nuclear operator system R, the class of finite-dimensional exact R-operator

systems.

The limits of the Fräıssé classes mentioned in Theorem 4.8 have extremely amenable automorphism

groups in view of the correspondence between extreme amenability and the approximate Ramsey

property given by Proposition 2.16.

Corollary 4.9. The following Polish groups are extremely amenable:

(1) the stabilizer AutpApPq,Ω
ApF q
ApPq q of the generic ApF q-state Ω

ApF q
ApPq on the Poulsen system ApPq for

any metrizable Choquet simplex F [3, Theorem 3.3].
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(2) The stabilizer AutpApNPq,ΩR
ApNPqq of the generic R-state ΩR

ApNPq on the noncommutative Poulsen

system ApNPq for any separable nuclear operator system R.

(3) The stabilizer AutpApPpqqq,ΩR
ApPpqqq

q of the generic R-state ΩR
ApPpqqq

on the q-minimal Poulsen

system ApPpqqq for any q-minimal nuclear operator system R.

4.3. The universal minimal flows of the AutpNPq. Using Corollary 4.9 we can compute the

universal minimal flows of the matrix affine homeomorphism group AutpNPq of the noncommutative

Poulsen simplex, and the matrix affine homeomorphism group AutpPpqqq of the q–minimal Poulsen

simplex. The corresponding result for the Poulsen simplex was obtained in [3, Theorem 3.10].

Theorem 4.10.

(1) The universal minimal flow of AutpNPq is the canonical action AutpNPq y NP1.

(2) The universal minimal flow of AutpPpqqq is the canonical action AutpPpqqq y P
pqq
1 .

Proof. (1): The minimality of the action AutpNPq y NP1 is a consequence of the following fact: for any

d P N and ε ą 0 there exists m P N such that for any s P SpMdq and t P SpMmq there exists a complete

order embedding φ : Md Ñ Mm such that }t ˝ φ´ s}cb ă ε; see [37, Lemma 8.10] and [37, Proposition

5.8]. Consider the generic state ΩC
ApNPq on ApNPq. It is shown in [37, Section 8.2] that ΩC

ApNPq is a

matrix extreme point of NP whose Aut pNPq-orbit is dense in NP1. The stabilizer AutpNP,ΩC
ApNPqq

of ΩC
ApNPq is extremely amenable by Corollary 4.9. The canonical AutpNPq-equivariant map from

the quotient AutpNPq-space AutpNPq{{AutpNP,ΩC
ApNPqq to NP1 is a uniform equivalence. This follows

from the homogeneity property of pApNPq,ΩC
ApNPqq as the Fräıssé limit of the class of finite-dimensional

operator systems with a distinguished state; see also [37, Subsection 5.4]. This allows one to conclude

via a standard argument—see [43, Theorem1.2]—that the action AutpNPq y NP is the universal

minimal compact AutpNPq-space.

(2): Minimality of the action AutpPpqqq y P
pqq
1 is a consequence of a similar assertion than in 1), where

Md and Mm are replaced with ℓd8pMqq and ℓm8pMqq; see [37, Lemma 6.25]. The rest of the argument

is entirely analogous. �
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topological dynamics of automorphism groups. Geometric and Functional Analysis, 15(1):106–

189, 2005.

[31] Eberhard Kirchberg and Simon Wassermann. C*-algebras generated by operator systems. Journal

of Functional Analysis, 155(2):324–351, 1998.

[32] Wies law Kubís and S lawomir Solecki. A proof of uniqueness of the Gurarĭı space. Israel Journal

of Mathematics, 195(1):449–456, 2013.
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