9 research outputs found
Characterization and identification of hypotensive, immunomodulatory, and metabolic disorder benefiting peptides from Atlantic mackerel (Scomber scombrus) hydrolysate separated based on molecular weight, charge, and hydrophobicity
L'hypertension artérielle est l'un des principaux facteurs de risque de syndrome cardiométabolique. En outre, l'inflammation chronique de bas grade joue également un rôle important dans la pathogenèse du syndrome. Il existe un lien entre l'apparition de la résistance à l 'insuline et l'hypertension qui peut initier le diabète de type 2 et l'obésité. Des peptides bioactifs terrestres et marins, des biomolécules de poissons en particulier, ont démontré des effets immunomodulateurs puissants ainsi que des effets hypotenseurs potentiels dans le traitement de ces facteurs de risque et de leurs complications associées. Notre hypothèse était que les fractions d'hydrolysat protéique de maquereau de l’Atlantique (Scromber scombrus) possèdent une activité biologique bénéfique sur l'hypertension. Le but de notre travail était de fractionner et d'identifier des peptides antihypertenseurs, immunomodulateurs et antiMetS basés sur diverses caractéristiques moléculaires de charge, de polarité et de taille. Les fractions ont été produites en utilisant la technique d'extraction en phase solide chromatographique (SPE), l'ultrafiltration baromembranaire (UF) et l'électrodialyse conditions expérimentales étaient l’utilisation des pH avec membrane UF (EDUF). Les 3, 6, 9, et des membranes de seuils de coupure (MWCO) de < 20 kDa pour l’EDUF et de MWCO de < 1 kDa pour l’UF. Selon nos résultats, parmi toutes les fractions hydrophobes obtenues par SPE il y avait une fraction ayant un effet antihypertenseur important, de 5 µg, et possédant des peptides antidémontrant une inhibition de 50% à une quantité inflammatoires, ayant une inhibition de 17% à une quantité de 10 µg de protéines. Par rapport au témoin négatif (Lipopolysaccharide) les peptides anioniques et cationiques des fractions d’EDUF à pH3 ainsi que l'hydrolysat de maquereau ont démontré des effets pro antiACE et anti-- inflammatoires significatifs jusqu'à 27%. La fraction inflammatoire la plus puissante était riche en acides aminés à chaîne latérale ramifiée et hydrophobe mais avait moins d’acides aminés chargés par rapport aux fractions proinflammatoires EDUF. Toutes les séquences possibles identifiées dans cette fraction sont courtes et ont des valeurs GRAVY positives. Cependant, l'hydrolysat et la fraction positivement du pH3 n'ont pas exercé d'effet antichargée MetS significatif chez les souris nourries au régime hypercalorique. En conclusion, la polarité et la charge de la fraction du maquereau de l’Atlantique sont les facteurs les plus importants pour l' immunomodulation et l'activité hypotensive des peptides. De plus, ces facteurs n'étaient pas suffisants pour réguler les déficiences métaboliques chez les souris obèses et résistantes à l'insuline induites par le régime alimentaire. Par conséquent, la compréhension du mécanisme d'action et la caractérisation approfondie des fractions bioactives seraient nécessaires pour une conclusion définitive et une application clinique du matériel.While, on the one hand, high blood pressure is one of the main risk factors of cardiometabolic syndrome, on the other hand, chronic low-grade inflammation similarly plays a significant role in the pathogenesis of the syndrome. Moreover, there is a link between the occurrence of insulin resistance and hypertension consequently initiating type 2 diabetes and obesity. Interestingly, terrestrial, and marine bioactive peptides, in particular fish biomolecules, have been reported as potent immunomodulators and or hypotensive material in the treatment of these risk factors and associated complications. Hence, our hypothesis was that Atlantic mackerel (Scomber scombrus) protein hydrolysate fractions possess beneficial biological activity on hypertension, inflammation, and other Metabolic Syndrome (MetS) factors. The aim of our work was to fractionate and identify antihypertensive, immunomodulating and anti-MetS peptides based on various molecule characteristics of charge, polarity, and size. Fractions were produced using chromatographic Solid Phase Extraction technique (SPE), pressure driven-Ultra Filtration (UF) and Electrodialysis with UF membrane (EDUF) under experimental conditions of pH 3, 6 and 9 with MWCO of < 1 kDa and < 20 kDa, respectively. According to the results of our in-vitro analysis the highly hydrophobic fraction of SPE was a potent antihypertensive, 50% inhibition at 5 µg, and anti-inflammatory product, 17% inhibition at 10 µg of protein, among all. Furthermore, in comparison to the negative control (Lipopolysaccharide), anionic and cationic peptides of pH3 EDUF as well as mackerel hydrolysate demonstrated significant pro-inflammatory effects up to 27%. The most potent anti-ACE and anti-inflammatory fraction was rather branched chain and hydrophobic amino acid rich with lesser charged amino acids compared to the EDUF pro-inflammatory fractions. All the identified possible sequences of the same fraction had rather small molecular mass with positive GRAVY values. Selected material, the hydrolysate and positively charged fraction of pH3, however, did not exert any significant anti-MetS effect in hypercaloric diet fed obese insulin resistant rats. In conclusion, polarity and charge of a fraction were the most important factors for immunomodulation and hypotensive activity of Atlantic mackerel peptides. Nevertheless, those factors were not sufficient enough to regulate metabolic impairments in diet-induced obese and insulin resistant rats. Accordingly, understanding the mechanism of action and thorough characterization of bioactive fractions would be required for a definite conclusion and clinical application of the material
istraživanje učinka prirodnih inhibitora na razgradivost sezama primjenom in vitro metode u tri koraka
The aim of this experiment was to investigate the beneficial effect of monensin, tannic acid and cinnamon essential oil addition on sesame meal degradability by the three-step in vitro method. The effect of experimental additives on the degradability of sesame meal in the rumen, after rumen and in the whole gastrointestinal tract was significant (P<0.05). The in vitro ruminal and intestinal digestibility of sesame meal crude protein with experimental additives was in the range of 76 to 84% and 49 to 60%, respectively. The intestinal degradability of crude protein increased with the addition of cinnamon essential oil (about 10%). Addition of monensin, tannic acid, and cinnamon essential oil significantly increased the degradability of Neutral Detergent Fiber (NDF) and Acid Detergent Fiber (ADF) in the rumen, intestines and the whole gastrointestinal tract. The results showed that cinnamon essential oil (125 mg/L) increased the degradability of dry matter (DM), organic matter (OM), crude protein (CP), ADF and NDF in the rumen, after rumen and the whole digestive tract compared to all treatments (P<0.05). The results showed that addition of tannic acid (100 mg/L) decreased the disappearance of crude protein in the rumen, while it increased crude protein’s disappearance in the after rumen (P<0.05).Cilj ovog rada bio je istražiti pozitivni učinak dodatka monenzina, tanina i esencijalnog ulja cimeta na razgradivost sezama in vitro metodom u tri koraka. Pronađen je znakovit učinak pokusnih dodataka na razgradivost sezama u buragu, a zatim i u cijelom gastrointestinalnom traktu (P < 0,05). In vitro buražna i intestinalna probavljivost sirovih bjelančevina sezama s pokusnim dodacima bila je od 76 do 84 %, odnosno 49 do 60 %. Intestinalna razgradivost sirove bjelančevine povećala se s dodatkom esencijalnog ulja cimeta (oko 10 %). Dodatak monenzina, tanina i esencijalnog ulja cimeta znakovito je povećao razgradivost neutralnih vlakana deterdženta (NDF) i kiselih vlakana deterdženta (ADF) u buragu, crijevima i cijelom gastrointestinalnom traktu. Rezultati su pokazali da esencijalno ulje cimeta (125 mg/L) povećava razgradivost suhe tvari (DM), organske tvari (OM), sirovog proteina (CP), ADF-a i NDF-a u buragu, a zatim i u cijelom probavnom sustavu u usporedbi s drugim pokusnim postupcima (P < 0,05). Rezultati su pokazali da dodatak tanina (100 mg/L) smanjuje razgradnju sirovog proteina u buragu, a povećava njegovu razgradnju u dijelu probavnog trakta nakon buraga (P < 0,05)
Molecular Mechanisms of Inhibition of Streptococcus Species by Phytochemicals
This review paper summarizes the antibacterial effects of phytochemicals of various medicinal plants against pathogenic and cariogenic streptococcal species. The information suggests that these phytochemicals have potential as alternatives to the classical antibiotics currently used for the treatment of streptococcal infections. The phytochemicals demonstrate direct bactericidal or bacteriostatic effects, such as: (i) prevention of bacterial adherence to mucosal surfaces of the pharynx, skin, and teeth surface; (ii) inhibition of glycolytic enzymes and pH drop; (iii) reduction of biofilm and plaque formation; and (iv) cell surface hydrophobicity. Collectively, findings from numerous studies suggest that phytochemicals could be used as drugs for elimination of infections with minimal side effects
Antihypertensive and Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Fish as Potential Cardioprotective Compounds
The term metabolic/cardiometabolic/insulin resistance syndrome could generally be defined as the co-occurrence of several risk factors inclusive of systemic arterial hypertension. Not only that organizations, such as the world health organization (WHO) have identified high blood pressure as one of the main risk factors of the cardiometabolic syndrome, but there is also a link between the occurrence of insulin resistance/impaired glucose tolerance and hypertension that would consequently lead to type-2 diabetes (T2D). Hypertension is medicated by various classes of synthetic drugs; however, severe or mild adverse effects have been repeatedly reported. To avoid and reduce these adverse effects, natural alternatives, such as bioactive peptides derived from different sources have drawn the attention of researchers. Among all types of biologically active peptides inclusive of marine-derived ones, this paper’s focus would solely be on fish and fishery by-processes’ extracted peptides and products. Isolation and fractionation processes of these products alongside their structural, compositional and digestion stability characteristics have likewise been briefly discussed to better address the structure-activity relationship, expanding the reader’s knowledge on research and discovery trend of fish antihypertensive biopeptides. Furthermore, drug-likeness of selected biopeptides was predicted by Lipinski’s rules to differentiate a drug-like biopeptide from nondrug-like one
Strategies to Mitigate Enteric Methane Emissions in Ruminants: A Review
Methane is the main greenhouse gas (GHG) emitted by ruminants. Mitigation strategies are required to alleviate this negative environmental impact while maintaining productivity and ruminants’ health. To date, numerous methane mitigation strategies have been investigated, reported and suggested by scientists to the livestock industry. In this review, the authors will focus on the commonly practiced and available techniques expanding the knowledge of the reader on the advances of methane mitigation strategies with a focus on the recent literature. Furthermore, the authors will attempt to discuss the drawbacks of the strategies in terms of animal health and performance reduction as well as the concept of feed and energy loss, adding an economic perspective to methane emission mitigation which is in the farmers’ direct interest. As a whole, many factors are effective in reducing undesired methane production, but this is definitely a complex challenge. Conclusively, further research is required to offer effective and efficient methane production mitigation solutions in ruminants worldwide, thus positively contributing to climate change
Molecular Mechanisms of Inhibition of Streptococcus Species by Phytochemicals
This review paper summarizes the antibacterial effects of phytochemicals of various medicinal plants against pathogenic and cariogenic streptococcal species. The information suggests that these phytochemicals have potential as alternatives to the classical antibiotics currently used for the treatment of streptococcal infections. The phytochemicals demonstrate direct bactericidal or bacteriostatic effects, such as: (i) prevention of bacterial adherence to mucosal surfaces of the pharynx, skin, and teeth surface; (ii) inhibition of glycolytic enzymes and pH drop; (iii) reduction of biofilm and plaque formation; and (iv) cell surface hydrophobicity. Collectively, findings from numerous studies suggest that phytochemicals could be used as drugs for elimination of infections with minimal side effects
Cranberry and Sumac Extracts Exhibit Antibacterial and Anti-Adhesive Effects Against Streptococcus pyogenes
Group A Streptococci (GAS) or Streptococcus pyogenes is responsible for acute bacterial pharyngitis in children as well as adults. Streptococcal pharyngitis is initiated by successful attachment and colonization of the bacteria, followed by the establishment of the biofilm in various environments. In this study, we examined the antibacterial activities of in-house prepared aqueous and ethanolic extracts of 10 Atlantic Canada fruits in the context of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time–kill kinetics, and adhesion inhibition properties against S. pyogenes. Per our findings, MIC and MBC for all the tested extracts ranged from 0.25 to 8 mg/mL and from 4 to 64 mg/mL, respectively. Accordingly, at 1⁄2 × MBC, cranberry and sumac extracts also lowered the attachment of GAS to the uncoated and fibronectin-coated substratum. Particularly, cranberry and sumac aqueous extracts were more effective against the adhesion of S. pyogenes ATCC 19615 to the fibronectin-coated surface than a clinical strain. In conclusion, ethanolic and aqueous extracts of cranberry and sumac could potentially be incorporated into natural health products designed for the amelioration of strep throat, yet a detailed understanding of its mode of action (e.g., biofilm inhibition and eradication) could pave its path to the field of antibacterial natural health product discovery, design, and development