5 research outputs found

    Cystic Fibrosis airway epithelium remodelling: involvement of inflammation

    No full text
    International audienceChronic inflammation is a hallmark of cystic fibrosis (CF) lung disease and airway epithelium damage and remodelling are important components of lung pathology progression in CF. Whether this remodelling is secondary to deleterious infectious and inflammatory mediators, or to alterations of CF human airway epithelial (HAE) cells, such as their hyper inflammatory phenotype or their basic cystic fibrosis transmembrane conductance regulator (CFTR) default, remains debated. In this study, we evaluated the involvement of alterations of CF HAE cells in airway epithelium remodelling. HAE cells from non‐CF and CF patients were cultured in an air–liquid interface, with and without inflammatory stimulation, along the regeneration process, and the remodelling of the reconstituted epithelium was analysed. We confirmed that CF HAE cells showed a hyperinflammatory phenotype which was lost with time. In comparison to non‐CF epithelium, CF epithelium regeneration in the absence of exogenous inflammation was higher and exhibited basal cell hyperplasia. This remodelling was mimicked by inflammatory stimulation of non‐CF cells and was absent when CF HAE cells were no longer hyperinflamed. Moreover, the number of goblet cells was similar in non‐CF and CF cultures and increased equally under inflammatory stimulation. Finally, whatever the inflammatory environment, CF cultures showed a delay in ciliated cell differentiation. In conclusion, alterations of CF HAE cells partly regulate airway epithelium remodelling following injury and regeneration. This remodelling, together with goblet cell hyperplasia induced by exogenous inflammation and alteration of ciliated cell differentiation, may worsen mucociliary clearance impairment, leading to injur

    Feasibility of nasal epithelial brushing for the study of airway epithelial functions in CF infants.

    Get PDF
    International audienceBACKGROUND: For a better understanding of the early stages of cystic fibrosis (CF), it is of major interest to study respiratory epithelial cells obtained as early as possible. Although bronchoalveolar lavage has been proposed for this purpose, nasal brushing, which is a much less invasive technique, has seldom been used in CF infants. The aim of the present study was to examine in a few infants the feasibility of a nasal brushing technique for studies of airway epithelial functions in very young CF infants. METHODS: In 5 CF (median age 12, range 1-18 months) and 10 control infants (median age 5, range 1-17 months), a nasal brushing was performed by means of a soft sterile cytology brush, after premedication with oral paracetamol (15 mg/kg body weight) and rectal midazolam (0.2 mg/kg body weight). Samples were used for microbiological, cytological and functional studies. RESULTS: The procedure was well tolerated. Number of cells collected was similar in CF and non-CF patients (CF: median 230x10(3), range 42x10(3)-900x10(3); non-CF: median 340x10(3), range 140x10(3)-900x10(3)). Median number of viable cells was 67% (range 31-84%). Freshly obtained samples were successfully used for studies of ciliary beating frequency and cAMP-dependent chloride efflux. In 7 out of 17 cell cultures, confluence was obtained (CF: 2 out of 7; non-CF: 5 out of 10). The feasibility of studying protein release and mRNA expression of IL-8, IL-6 and TNF-alpha, under basal conditions and after stimulation by Pseudomonas aeruginosa, was demonstrated. CONCLUSIONS: By means of a simple nasal brushing technique easily performed and well tolerated, it is feasible, in infants, to harvest respiratory cells in sufficient amounts to study the airway epithelium using a broad range of techniques including cell culture

    Les manifestation oculaires des troubles primitifs du metabolisme des lipides: Étude clinique, gĂ©nĂ©tique et anatomo-pathologique

    No full text
    corecore