13 research outputs found

    Delay Tolerant Energy Efficient protocol for Inter-BAN Communication in Mobile Body Area Networks

    Get PDF
    Body Area Networks (BANs) are used in a range of applications. In these networks the sensor nodes attached to human body collect data and send it to controller node which in turn sends to a Base Station (BS) located at a remote location. The controller nodes in a BAN can be replaced easily but when it comes to BANs moving in areas like a war it is hard to replace the batteries frequently. So we need to reduce energy requirement of the nodes to increase the network lifetime. Using mobile sensors is one way to reduce energy and controller nodes can send data to sink easily while performing inter-BAN communication where nodes need to act in a cooperative manner to send data to BS using multi-hop communication. In this paper, we have proposed a new clustering algorithm in which probability of a node to become a Cluster Head (CH) is decided on the basis of its geographical location and residual energy of the node. Simulations results show that the proposed protocol is better than the existing EDDEEC protocol in terms of delay, energy efficiency, reliability and network lifetime.

    Software-Hardware Co-design for Fast and Scalable Training of Deep Learning Recommendation Models

    Full text link
    Deep learning recommendation models (DLRMs) are used across many business-critical services at Facebook and are the single largest AI application in terms of infrastructure demand in its data-centers. In this paper we discuss the SW/HW co-designed solution for high-performance distributed training of large-scale DLRMs. We introduce a high-performance scalable software stack based on PyTorch and pair it with the new evolution of Zion platform, namely ZionEX. We demonstrate the capability to train very large DLRMs with up to 12 Trillion parameters and show that we can attain 40X speedup in terms of time to solution over previous systems. We achieve this by (i) designing the ZionEX platform with dedicated scale-out network, provisioned with high bandwidth, optimal topology and efficient transport (ii) implementing an optimized PyTorch-based training stack supporting both model and data parallelism (iii) developing sharding algorithms capable of hierarchical partitioning of the embedding tables along row, column dimensions and load balancing them across multiple workers; (iv) adding high-performance core operators while retaining flexibility to support optimizers with fully deterministic updates (v) leveraging reduced precision communications, multi-level memory hierarchy (HBM+DDR+SSD) and pipelining. Furthermore, we develop and briefly comment on distributed data ingestion and other supporting services that are required for the robust and efficient end-to-end training in production environments

    Endoplasmic Reticulum Stress-Induced JNK Activation Is a Critical Event Leading to Mitochondria-Mediated Cell Death Caused by β-Lapachone Treatment

    Get PDF
    β-lapachone (β-lap) is a bioreductive agent that is activated by the two-electron reductase NAD(P)H quinone oxidoreductase 1 (NQO1). Although β-lap has been reported to induce apoptosis in various cancer types in an NQO1-dependent manner, the signaling pathways by which β-lap causes apoptosis are poorly understood.β-lap-induced apoptosis and related molecular signaling pathways in NQO1-negative and NQO1-overexpressing MDA-MB-231 cells were investigated. Pharmacological inhibitors or siRNAs against factors involved in β-lap-induced apoptosis were used to clarify the roles played by such factors in β-lap-activated apoptotic signaling pathways. β-lap leads to clonogenic cell death and apoptosis in an NQO1- dependent manner. Treatment of NQO1-overexpressing MDA-MB-231 cells with β-lap causes rapid disruption of mitochondrial membrane potential, nuclear translocation of AIF and Endo G from mitochondria, and subsequent caspase-independent apoptotic cell death. siRNAs targeting AIF and Endo G effectively attenuate β-lap-induced clonogenic and apoptotic cell death. Moreover, β-lap induces cleavage of Bax, which accumulates in mitochondria, coinciding with the observed changes in mitochondria membrane potential. Pretreatment with Salubrinal (Sal), an endoplasmic reticulum (ER) stress inhibitor, efficiently attenuates JNK activation caused by β-lap, and subsequent mitochondria-mediated cell death. In addition, β-lap-induced generation and mitochondrial translocation of cleaved Bax are efficiently blocked by JNK inhibition.Our results indicate that β-lap triggers induction of endoplasmic reticulum (ER) stress, thereby leading to JNK activation and mitochondria-mediated apoptosis. The signaling pathways that we revealed in this study may significantly contribute to an improvement of NQO1-directed tumor therapies

    Syphilis D′ Emblee

    No full text
    A 28-year-old male patient presented to Skin, V.D. and Leprosy outpatient with a single gray white plaque on the left side of the lower lip for last 8 months and multiple papulosquamous lesions all over the body for last 6 months. There was history of blood transfusion for anemia 1 year back. Histopathology of lip lesion and reactive VDRL and TPHA tests confirmed the diagnosis as syphilis. We report this rare case of Syphilis d′ emblee

    Use of fine needle aspirate from peripheral nerves of pure-neural leprosy for cytology and polymerase chain reaction to confirm the diagnosis: A follow-up study of 4 years

    No full text
    Background: Pure neural leprosy (PNL) still remains a diagnostic challenge because of the absence of sine qua non skin lesions of leprosy and a confirmatory diagnostic method. The authors had earlier described a simple yet objective technique of combining fine needle aspiration cytology (FNAC) coupled with a multiplex polymerase chain reaction (PCR) in a pilot study, wherein the technique showed promise of a reliable diagnostic tool. In the pursuit of further evidence, the authors carried out a 4-year study with PNL cases to find the efficacy and reliability of the said method in a larger sample size. Aim: This study was conducted to find the efficacy, reliability, and reproducibility of FNAC coupled with multiplex PCR and Ziehl-Neelsen (ZN) staining in identifying the cases of PNL. Materials and Methods: All cases that were suspected to be suffering from PNL, following evaluation by two independent observers were included in the study and were subjected to FNAC from the affected nerve, and the aspirates were evaluated for cytology, ZN staining, and multiplex PCR for Mycobacterium leprae genome. In addition, serum anti-PGL1 levels were also performed in all the study subjects. Fifteen non-PNL cases were also included in the control arm. Results: A total of 47 cases were included in the test arm and subjected to FNAC. Conventional ZN staining could demonstrate acid-fast bacilli (AFB) in only 15 out of 47 cases (31.91%) while M. leprae DNA could be elicited in 37 (78.72%) cases by the multiplex PCR. Only 13 (27.65%) out of 47 cases showed anti-PGLI-1 antibody positivity. On cytological examination of the nerve aspirates, only 11 (23.40%) cases showed epithelioid cells whereas nonspecific inflammation was seen in 26 (75.60%) cases. Conclusion: The results of this study conducted over a larger sample size corroborate with the findings of our pilot study. In a resource poor set up, FNAC in combination with ZN staining and multiplex PCR is a rapid, simple, and easily performed test, which can give a reproducible and objective diagnosis in cases of PNL

    Hyperglycemia is associated with duodenal dysbiosis and altered duodenal microenvironment

    No full text
    Abstract The gut microbiome influences the pathogenesis and course of metabolic disorders such as diabetes. While it is likely that duodenal mucosa associated microbiota contributes to the genesis and progression of increased blood sugar, including the pre-diabetic stage, it is much less studied than stool. We investigated paired stool and duodenal microbiota in subjects with hyperglycemia (HbA1c ≥ 5.7% and fasting plasma glucose > 100 mg/dl) compared to normoglycemic. We found patients with hyperglycemia (n = 33) had higher duodenal bacterial count (p = 0.008), increased pathobionts and reduction in beneficial flora compared to normoglycemic (n = 21). The microenvironment of duodenum was assessed by measuring oxygen saturation using T-Stat, serum inflammatory markers and zonulin for gut permeability. We observed that bacterial overload was correlated with increased serum zonulin (p = 0.061) and higher TNF-α (p = 0.054). Moreover, reduced oxygen saturation (p = 0.021) and a systemic proinflammatory state [increased total leukocyte count (p = 0.031) and reduced IL-10 (p = 0.015)] characterized the duodenum of hyperglycemic. Unlike stool flora, the variability in duodenal bacterial profile was associated with glycemic status and was predicted by bioinformatic analysis to adversely affect nutrient metabolism. Our findings offer new understanding of the compositional changes in the small intestine bacteria by identifying duodenal dysbiosis and altered local metabolism as potentially early events in hyperglycemia
    corecore