21 research outputs found

    Hierarchical Corannulene‐Based Materials: Energy Transfer and Solid‐State Photophysics

    Get PDF
    We report the first example of a donor–acceptor corannulene-containing hybrid material with rapid ligand-to-ligand energy transfer (ET). Additionally, we provide the first time-resolved photoluminescence (PL) data for any corannulene-based compounds in the solid state. Comprehensive analysis of PL data in combination with theoretical calculations of donor–acceptor exciton coupling was employed to estimate ET rate and efficiency in the prepared material. The ligand-to-ligand ET rate calculated using two models is comparable with that observed in fullerene-containing materials, which are generally considered for molecular electronics development. Thus, the presented studies not only demonstrate the possibility of merging the intrinsic properties of π-bowls, specifically corannulene derivatives, with the versatility of crystalline hybrid scaffolds, but could also foreshadow the engineering of a novel class of hierarchical corannulene-based hybrid materials for optoelectronic devices

    Rapid vegetation redistribution in Southern California during the early 2000s drought

    Get PDF
     Climate change in semi-arid, midlatitude mountain environments is expected to shift the spatial patterns of temperature, water availability, and vegetation upslope. Vegetation growing near its low-elevation range limit may prove especially vulnerable to mortality and decline. We investigated the altitudinal pattern of conifer mortality that occurred from 2002 to 2004 in Southern California's San Jacinto Mountains. We found that conifer mortality was focused in the lower portion of the midmontane conifer range, which drove the midmontane conifer distribution upslope. We investigated past reports of conifer mortality in Southern California by searching historical newspaper accounts. We found evidence of previous episodes of conifer mortality that coincided with past droughts, and which may have caused vegetation redistribution in the past. We interpret the early 2000s mortality and associated vegetation redistribution as a response to natural decadal to centennial climate variability. Moreover, we hypothesize this response mode will dominate the early impact of global climate change on semi-arid forest, which, in turn, may complicate efforts to distinguish between ecological changes attributable to natural climate variability and those attributable to global climate change
    corecore