1,658 research outputs found

    Low-Level Groundwater Atrazine in High Atrazine Usage Nebraska Counties: Likely Effects of Excessive Groundwater Abstraction

    Get PDF
    Recent studies observed a correlation between estrogen-related cancers and groundwater atrazine in eastern Nebraska counties. However, the mechanisms of human exposure to atrazine are unclear because low groundwater atrazine concentration was observed in counties with high cancer incidence despite having the highest atrazine usage. We studied groundwater atrazine fate in high atrazine usage Nebraska counties. Data were collected from Quality Assessed Agrichemical Contaminant Nebraska Groundwater, Parameter–Elevation Regressions on Independent Slopes Model (PRISM), and water use databases. Descriptive statistics and cluster analysis were performed. Domestic wells (59%) were the predominant well type. Groundwater atrazine was affected by well depth. Clusters consisting of wells with low atrazine were characterized by excessive groundwater abstraction, reduced precipitation, high population, discharge areas, and metropolitan counties. Hence, low groundwater atrazine may be due to excessive groundwater abstraction accompanied by atrazine. Human exposure to atrazine in abstracted groundwater may be higher than the estimated amount in groundwater

    Optimal statistic for detecting gravitational wave signals from binary inspirals with LISA

    Full text link
    A binary compact object early in its inspiral phase will be picked up by its nearly monochromatic gravitational radiation by LISA. But even this innocuous appearing candidate poses interesting detection challenges. The data that will be scanned for such sources will be a set of three functions of LISA's twelve data streams obtained through time-delay interferometry, which is necessary to cancel the noise contributions from laser-frequency fluctuations and optical-bench motions to these data streams. We call these three functions pseudo-detectors. The sensitivity of any pseudo-detector to a given sky position is a function of LISA's orbital position. Moreover, at a given point in LISA's orbit, each pseudo-detector has a different sensitivity to the same sky position. In this work, we obtain the optimal statistic for detecting gravitational wave signals, such as from compact binaries early in their inspiral stage, in LISA data. We also present how the sensitivity of LISA, defined by this optimal statistic, varies as a function of sky position and LISA's orbital location. Finally, we show how a real-time search for inspiral signals can be implemented on the LISA data by constructing a bank of templates in the sky positions.Comment: 22 pages, 15 eps figures, Latex, uses iopart style/class files. Based on talk given at the 8th Gravitational Wave Data Analysis Workshop, Milwaukee, USA, December 17-20, 2003. Accepted for publication in Class. Quant. Gra

    Report from Working Group 3: Beyond the standard model physics at the HL-LHC and HE-LHC

    Get PDF
    This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High Luminosity (HL) phase of the LHC, defined as 33 ab1^{-1} of data taken at a centre-of-mass energy of 14 TeV, and of a possible future upgrade, the High Energy (HE) LHC, defined as 1515 ab1^{-1} of data at a centre-of-mass energy of 27 TeV. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by 2050%20-50\% on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will, generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics

    Simulation and sensitivities for a phased IceCube-Gen2 deployment

    Get PDF

    A next-generation optical sensor for IceCube-Gen2

    Get PDF

    Optimization of the optical array geometry for IceCube-Gen2

    Get PDF

    Concept Study of a Radio Array Embedded in a Deep Gen2-like Optical Array

    Get PDF

    Sensitivity studies for the IceCube-Gen2 radio array

    Get PDF

    Simulation study for the future IceCube-Gen2 surface array

    Get PDF
    corecore