343 research outputs found

    Constraining cosmology and ionization history with combined 21 cm power spectrum and global signal measurements

    Full text link
    Improvements in current instruments and the advent of next-generation instruments will soon push observational 21 cm cosmology into a new era, with high significance measurements of both the power spectrum and the mean ("global") signal of the 21 cm brightness temperature. In this paper we use the recently commenced Hydrogen Epoch of Reionization Array as a worked example to provide forecasts on astrophysical and cosmological parameter constraints. In doing so we improve upon previous forecasts in a number of ways. First, we provide updated forecasts using the latest best-fit cosmological parameters from the Planck satellite, exploring the impact of different Planck datasets on 21 cm experiments. We also show that despite the exquisite constraints that other probes have placed on cosmological parameters, the remaining uncertainties are still large enough to have a non-negligible impact on upcoming 21 cm data analyses. While this complicates high-precision constraints on reionization models, it provides an avenue for 21 cm reionization measurements to constrain cosmology. We additionally forecast HERA's ability to measure the ionization history using a combination of power spectrum measurements and semi-analytic simulations. Finally, we consider ways in which 21 cm global signal and power spectrum measurements can be combined, and propose a method by which power spectrum results can be used to train a compact parameterization of the global signal. This parameterization reduces the number of parameters needed to describe the global signal, increasing the likelihood of a high significance measurement.Comment: 16 pages, 8 figures. Revised to match accepted MNRAS version: expanded discussion of covariances between astrophysics and cosmology in Section 2.2, including two new figures; short discussion relating to KL modes added to Section 4; final results unchange

    Redundant Array Configurations for 21 cm Cosmology

    Full text link
    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays--in which the same mode on the sky is sampled by many antenna pairs--for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA's can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via "off-grid" antennas and increased angular resolution via far-flung "outrigger" antennas is possible with a redundantly calibratable array configuration.Comment: 19 pages, 11 figures. Revised to match the accepted ApJ versio

    INCIDENTAL AND JOINT CONSUMPTION IN RECREATION DEMAND

    Get PDF
    A theory for analyzing incidental consumption in a single site recreation demand model is presented. We show that incidental consumption on a recreation trip, such as a visit to see friends or a visit to a second recreation site, can be treated as a complementary good and analyzed using conventional theory. We also show that the analysis applies whether the side trips are incidental or joint. In a simple application we find that failing to account for incidental consumption appears to create little bias in valuing recreation sites.Resource /Energy Economics and Policy,

    Calibration of Low-Frequency, Wide-Field Radio Interferometers Using Delay/Delay-Rate Filtering

    Full text link
    We present a filtering technique that can be applied to individual baselines of wide-bandwidth, wide-field interferometric data to geometrically select regions on the celestial sphere that contain primary calibration sources. The technique relies on the Fourier transformation of wide-band frequency spectra from a given baseline to obtain one-dimensional "delay images", and then the transformation of a time-series of delay images to obtain two-dimensional "delay/delay-rate images." Source selection is possible in these images given appropriate combinations of baseline, bandwidth, integration time and source location. Strong and persistent radio frequency interference (RFI) limits the effectiveness of this source selection owing to the removal of data by RFI excision algorithms. A one-dimensional, complex CLEAN algorithm has been developed to compensate for RFI-excision effects. This approach allows CLEANed, source-isolated data to be used to isolate bandpass and primary beam gain functions. These techniques are applied to data from the Precision Array for Probing the Epoch of Reionization (PAPER) as a demonstration of their value in calibrating a new generation of low-frequency radio interferometers with wide relative bandwidths and large fields-of-view.Comment: 17 pages, 6 figures, 2009AJ....138..219

    Emulating Simulations of Cosmic Dawn for 21cm Power Spectrum Constraints on Cosmology, Reionization, and X-ray Heating

    Full text link
    Current and upcoming radio interferometric experiments are aiming to make a statistical characterization of the high-redshift 21cm fluctuation signal spanning the hydrogen reionization and X-ray heating epochs of the universe. However, connecting 21cm statistics to underlying physical parameters is complicated by the theoretical challenge of modeling the relevant physics at computational speeds quick enough to enable exploration of the high dimensional and weakly constrained parameter space. In this work, we use machine learning algorithms to build a fast emulator that mimics expensive simulations of the 21cm signal across a wide parameter space to high precision. We embed our emulator within a Markov-Chain Monte Carlo framework, enabling it to explore the posterior distribution over a large number of model parameters, including those that govern the Epoch of Reionization, the Epoch of X-ray Heating, and cosmology. As a worked example, we use our emulator to present an updated parameter constraint forecast for the Hydrogen Epoch of Reionization Array experiment, showing that its characterization of a fiducial 21cm power spectrum will considerably narrow the allowed parameter space of reionization and heating parameters, and could help strengthen Planck's constraints on σ8\sigma_8. We provide both our generalized emulator code and its implementation specifically for 21cm parameter constraints as publicly available software.Comment: 22 pages, 9 figures; accepted to Ap

    Spectral Redundancy for Calibrating Interferometers and Suppressing the Foreground Wedge in 21\,cm Cosmology

    Full text link
    Observations of 21\,cm line from neutral hydrogen promise to be an exciting new probe of astrophysics and cosmology during the Cosmic Dawn and through the Epoch of Reionization (EoR) to when dark energy accelerates the expansion of the Universe. At each of these epochs, separating bright foregrounds from the cosmological signal is a primary challenge that requires exquisite calibration. In this paper, we present a new calibration method called \textsc{nucal} that extends redundant-baseline calibration, allowing spectral variation in antenna responses to be solved for by using correlations between visibilities measuring the same angular Fourier modes at different frequencies. By modeling the chromaticity of the beam-weighted sky with a tunable set of discrete prolate spheroidal sequences (DPSS), we develop a calibration loop that optimizes for spectrally smooth calibrated visibilities. Crucially, this technique does not require explicit models of the sky or the primary beam. With simulations that incorporate realistic source and beam chromaticity, we show that this method solves for unsmooth bandpass features, exposes narrowband interference systematics, and suppresses smooth-spectrum foregrounds below the level of 21\,cm reionization models, even within much of the so-called "wedge" region where current foreground mitigation techniques struggle. We show that this foreground subtraction can be performed with minimal cosmological signal loss for certain well-sampled angular Fourier modes, making spectral-redundant calibration a promising technique for current and next-generation 21\,cm intensity mapping experiments.Comment: 22 pages, 10 figures, Submitted to MNRA
    corecore