7,989 research outputs found

    Measuring the growth rate of structure with Type IA Supernovae from LSST

    Get PDF
    We investigate measuring the peculiar motions of galaxies up to z=0.5z=0.5 using Type Ia supernovae (SNe Ia) from LSST, and predict the subsequent constraints on the growth rate of structure. We consider two cases. Our first is based on measurements of the volumetric SNe Ia rate and assumes we can obtain spectroscopic redshifts and light curves for varying fractions of objects that are detected pre-peak luminosity by LSST (some of which may be obtained by LSST itself and others which would require additional follow-up). We find that these measurements could produce growth rate constraints at z<0.5z<0.5 that significantly outperform those using Redshift Space Distortions (RSD) with DESI or 4MOST, even though there are ∼4×\sim4\times fewer objects. For our second case, we use semi-analytic simulations and a prescription for the SNe Ia rate as a function of stellar mass and star formation rate to predict the number of LSST SNe IA whose host redshifts may already have been obtained with the Taipan+WALLABY surveys, or with a future multi-object spectroscopic survey. We find ∼18,000\sim 18,000 and ∼160,000\sim 160,000 SN Ia with host redshifts for these cases respectively. Whilst this is only a fraction of the total LSST-detected SNe Ia, they could be used to significantly augment and improve the growth rate constraints compared to only RSD. Ultimately, we find that combining LSST SNe Ia with large numbers of galaxy redshifts will provide the most powerful probe of large scale gravity in the z<0.5z<0.5 regime over the coming decades.Comment: 12 pages, 1 table, 5 figures. Accepted for publication in ApJ. The Fisher matrix forecast code used in this paper can be found at: https://github.com/CullanHowlett/PV_fisher. Updated to fix error in Eq. 1 (thanks to Eric Linder for pointing this out

    Temporal Evolution of Both Premotor and Motor Cortical Tuning Properties Reflect Changes in Limb Biomechanics

    Get PDF
    A prevailing theory in the cortical control of limb movement posits that premotor cortex initiates a high-level motor plan that is transformed by the primary motor cortex (MI) into a low-level motor command to be executed. This theory implies that the premotor cortex is shielded from the motor periphery and therefore its activity should not represent the low-level features of movement. Contrary to this theory, we show that both dorsal (PMd) and ventral premotor (PMv) cortices exhibit population-level tuning properties that reflect the biomechanical properties of the periphery similar to those observed in M1. We recorded single-unit activity from M1, PMd, and PMv and characterized their tuning properties while six rhesus macaques performed a reaching task in the horizontal plane. Each area exhibited a bimodal distribution of preferred directions during execution consistent with the known biomechanical anisotropies of the muscles and limb segments. Moreover, these distributions varied in orientation or shape from planning to execution. A network model shows that such population dynamics are linked to a change in biomechanics of the limb as the monkey begins to move, specifically to the state-dependent properties of muscles. We suggest that, like M1, neural populations in PMd and PMv are more directly linked with the motor periphery than previously thought

    WIYN/Hydra Detection of Lithium Depletion in F Stars of the Young Open Cluster M35 and Implications for the Development of the Lithium Gap

    Full text link
    We report discovery of significant depletion of Li on the surfaces of F dwarf stars in the 150-Myr-old open cluster M35, analagous to a feature in the 700-Myr-old Hyades cluster that has been referred to as the ``Li gap.'' We have caught the gap in the act of forming: using high resolution, high S/N, WIYN/Hydra observations, we detect Li in all but a few M35 F stars; the maximum depletion lies at least 0.6-0.8 dex below minimally depleted (or undepleted) stars. The M35 Li depletion region, a) is quite wide, with clear depletion seen from 6000K to 6700K or hotter; b) shows a significant dispersion in Li abundance at all T_eff, even with stars of the same T_eff; and c) contains undepleted stars (as well as depleted ones) in the (narrow) classical Hyades gap region, which itself shows no undepleted stars. All of these M35 Li depletion properties support rotationally-induced slow mixing as the primary physical mechanism that forms the gap, and argues against other proposed mechanisms, particularly diffusion and steady main sequence mass loss. When viewed in the context of the M35 Li depletion properties, the Hyades Li gap may well be wider than is usually recognized.Comment: 14 Pages, 3 figures. Accepted to ApJ Letter

    Multi-Pion Systems in Lattice QCD and the Three-Pion Interaction

    Full text link
    The ground-state energies of 2, 3, 4 and 5 \pi^+'s in a spatial volume V (2.5 fm)^3 are computed with lattice QCD. By eliminating the leading contribution from three-\pi^+ interactions, particular combinations of these n-\pi^+ ground-state energies provide precise extractions of the \pi^+\pi^+ scattering length in agreement with that obtained from calculations involving only two \pi^+'s. The three-\pi^+ interaction can be isolated by forming other combinations of the n-\pi^+ ground-state energies. We find a result that is consistent with a repulsive three-\pi^+ interaction for m_\pi < 352 MeV.Comment: 4 pages, 5 figure

    Large-scale Spatiotemporal Spike Patterning Consistent with Wave Propagation in Motor Cortex

    Get PDF
    Aggregate signals in cortex are known to be spatiotemporally organized as propagating waves across the cortical surface, but it remains unclear whether the same is true for spiking activity in individual neurons. Furthermore, the functional interactions between cortical neurons are well documented but their spatial arrangement on the cortical surface has been largely ignored. Here we use a functional network analysis to demonstrate that a subset of motor cortical neurons in non-human primates spatially coordinate their spiking activity in a manner that closely matches wave propagation measured in the beta oscillatory band of the local field potential. We also demonstrate that sequential spiking of pairs of neuron contains task-relevant information that peaks when the neurons are spatially oriented along the wave axis. We hypothesize that the spatial anisotropy of spike patterning may reflect the underlying organization of motor cortex and may be a general property shared by other cortical areas

    Implications of the Optical Observations of Neutron Stars

    Full text link
    We show that observations of pulsars with pulsed optical emission indicate that the peak flux scales according to the magnetic field strength at the light cylinder. The derived relationships indicate that the emission mechanism is common across all of the observed pulsars with periods ranging from 33ms to 385 ms and ages of 1000-300,000 years. It is noted that similar trends exist for γ\gamma ray pulsars. Furthermore the model proposed by Pacini (1971) and developed by Pacini and Salvati (1983,1987) still has validity and gives an adequate explanation of the optical phenomena.Comment: 23 pages, 6 figures, accepted for publication in the Astrophysical Journa
    • …
    corecore