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Abstract

We investigate the peculiar motions of galaxies up to z=0.5 using Type Ia supernovae (SNe Ia) from the Large
Synoptic Survey Telescope (LSST) and predict the subsequent constraints on the growth rate of structure. We
consider two cases. Our first is based on measurements of the volumetric SNeIa rate and assumes we can obtain
spectroscopic redshifts and light curves for varying fractions of objects that are detected pre-peak luminosity by
LSST (some of which may be obtained by LSST itself, and others that would require additional follow-up
observations). We find that these measurements could produce growth rate constraints at z 0.5< that significantly
outperform those found using Redshift Space Distortions (RSD) with DESI or 4MOST, even though there are 4~ ´
fewer objects. For our second case, we use semi-analytic simulations and a prescription for the SNeIa rate as a
function of stellar mass and star-formation rate to predict the number of LSST SNeIA whose host redshifts may
already have been obtained with the Taipan+WALLABY surveys or with a future multi-object spectroscopic survey.
We find ∼18,000 and ∼160,000 SNeIa with host redshifts for these cases, respectively. While this is only a fraction
of the total LSST-detected SNeIa, they could be used to significantly augment and improve the growth rate
constraints compared to only RSD. Ultimately, we find that combining LSST SNeIa with large numbers of galaxy
redshifts will provide the most powerful probe of large-scale gravity in the z 0.5< regime over the coming decades.
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1. Introduction

A key science driver of future surveys such as DESI (Levi
et al. 2013; DESI Collaboration et al. 2016) and 4MOST (de
Jong et al. 2012) is to test general relativity (GR; Einstein
1916). While our consensus cosmological model (ΛCDM) has
strong support from a variety of probes (Alam et al. 2017;
Planck Collaboration et al. 2016; Riess et al. 2016; Hildebrandt
et al. 2017), the nature of dark energy and matter remains
unknown, and tensions exist between these results. Modifying
the large-scale behavior of gravity is a promising alternative
toward resolving this.

The peculiar velocities (PVs) of galaxies present a method
to test gravity. The PV of a galaxy toward an overdensity at
scale factor a is dictated by the growth rate of structure,
f a d D a d aln ln=( ) ( ) , which is the logarithmic derivative
of the linear growth factor D. The linear growth factor in turn
describes how density perturbations in the universe grow over
cosmological time under the influence of gravity. Within the
framework of ΛCDM and GR, the linear growth factor is given
by (Heath 1977)
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and H0, m,0W , and ,0WL describe the cosmological model. In
turn, GR predicts a scale-independent growth rate that can be
approximated as f a am

0.55» W( ) ( ) (Linder & Cahn 2007).

Measuring a growth rate that differs from this could be used to
falsify GR and constrain alternative theories of gravity.
Redshift Space Distortions (RSD; Kaiser 1987) in the

clustering of galaxies are the most commonly used method
for constraining the growth rate, and the ability to make precise
RSD measurements is an integral part of the design of DESI
and 4MOST. However, this approach is fundamentally limited
due to cosmic variance and the degeneracy between f (a) and
galaxy bias.
Direct measurements of PVs can instead be obtained by

comparing the redshift-inferred distance to that measured using
the intrinsic properties of the galaxy or its inhabitants.
Examples include the Tully–Fisher (TF; Tully & Fisher 1977)
and Fundamental Plane (FP; Djorgovski & Davis 1987;
Dressler et al. 1987) relationships and the use of Type Ia
supernovae (SNe Ia, Phillips 1993). These measurements are
not affected by galaxy bias (Zheng et al. 2015), probe larger
scales than the density field, and can be used to overcome the
cosmic variance limit (Park 2000; Burkey & Taylor 2004).
Koda et al. (2014) and Howlett et al. (2017a) showed that
imminent redshift and PV surveys, such as Taipan (da Cunha
et al. 2017) and WALLABY (Koribalski 2012), have the ability
to produce some of the most accurate measurements of the
growth rate to date.
In this work, we consider the capabilities of PVs measured

using next generation measurements of SNeIA. Gordon et al.
(2007), Bhattacharya et al. (2011), and Odderskov & Hannestad
(2017) demonstrated that PVs obtained from the large number of
SNeIa we will detect with the Large Synoptic Survey Telescope
(LSST) have the potential to constrain dark energy and the linear
matter variance in spheres of radius h8 Mpc1- , 8s . We instead
build on the work of Howlett et al. (2017a) to show that, given
host galaxy redshifts and accurate SNe classification, the two-
point correlations between the velocities and positions of these
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SNeIa present a unique opportunity to measure the growth rate
in the z 0.5< universe. Using Fisher matrix forecasts, we find
that these measurements could significantly improve the
constraints found using just RSD with DESI and 4MOST.

Our aim is to present the constraints possible with SNeIA
that will be detected (pre-peak luminosity) with LSST.
However, LSST itself will only measure accurate light curves
for a small percentage of these within its wide field survey.
Additional follow-up observations will be needed to obtain
host redshifts and spectroscopic classifications for all SNeIA,
and improve on the overall photometric data quality and
volume. Hence we provide forecasts for a variety of scenarios
ranging from the typical numbers of SNeIA that may have
accurate light curves from LSST itself, to the case where we
can use additional follow-up to obtain light curves for all LSST
detections. We then investigate the LSST-detected SNeIA we
could expect to also have host redshifts from upcoming large
galaxy surveys. Through this, we seek to motivate further
consideration of the overlap between LSST and future
spectroscopic surveys, the need for accurate photometric or
spectroscopic follow-up of SNeIA whose light curves or types
cannot be measured by LSST alone, and studies into how well
PVs could be measured with SNeIA given realistic simulations
of LSST.

Throughout, we quote AB magnitudes and assume a
cosmology of 0.3121mW = , 0.0488bW = , H h1000 = =
67.51 km s Mpc1 1- - , n 0.9653s = , and z 0 0.8158s = =( ) .

2. Peculiar Velocities with LSST SNeIa

The LSST (Ivezic et al. 2008) project is a planned
photometric survey whose large field of view and high cadence
will allow for high-resolution imaging of approximately half
the sky to be taken every few days. These properties will allow
for the detections of millions of SNeIa over the course of the
survey. Measurements of the velocity field can be obtained
from such a sample of SNeIA by taking the difference between
the SNeIa absolute magnitudes measured from their light
curves and inferred from their apparent magnitudes and host
galaxy redshifts (Johnson et al. 2014; Huterer et al. 2017).
Equivalently, given a measurement of the distance modulus μ,
and the host redshift z, we can define the “log-distance” ratio

dD , the logarithm of the ratio between the comoving distance
inferred from the redshift dz (in parsecs), and the true comoving
distance,
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and q0 and j0 are the deceleration and jerk parameters. With the
same sample of host galaxy redshifts we can also consider
measurements of the density field and cross-correlations
between the density and velocity fields.

In addition to the large numbers of measured PVs from
LSST-detected SNeIA, the smaller intrinsic scatter in the

SNIa distance relationship compared to the TF or FP relations
makes each one more useful for constraining gravity. We do
not expect to be able to reduce the intrinsic scatter for TF or FP
galaxies below 20% for even next generation surveys, but the
distance error for SNeIa is currently at the 10% level (Rest
et al. 2014) and could be reduced to as little as 5% in the
coming decades (Fakhouri et al. 2015). This allows us to probe
the velocity field on larger scales and at higher redshifts than is
currently possible. We focus on measurements of the two-point
correlations between the density and velocity fields that will be
obtainable with LSST SNe Ia, although other statistics, such as
our local “bulk flow,” could also be measured.
For all numbers in this work, we assume a 10-year LSST

survey, and sky coverage of 18,000 deg2. The LSST survey
design we adopt for our forecasts is based on the LSST
Observing Strategy White Paper (Marshall et al. 2017).4

Simulations of the LSST observing strategy suggest 40%~ of
z 0.5< SNeIA will be detected pre-peak luminosity and
hence suitable for light-curve measurements. When discussing
LSST-detected SNeIA, we are presenting numbers and
forecasts weighted by this, i.e., we multiply the volumetric
rate and SNIA rate as a function of stellar mass and star-
formation rate (SFR) in the remainder of this work by 0.4.

3. LSST SNeIa Numbers

3.1. Volumetric Rate

To predict the numbers of SNeIa with PV measurements,
we consider two different scenarios. First, we take a
measurement of the volumetric rate of 6.8 10 5´ -

z h1 SN2.04 3+( ) Ia yr Mpc1 3- - (Dilday et al. 2010). For our
adopted LSST survey, this gives a total of 120 SN Ia deg 2- up
to z=0.5 and 2.2 10 SN6~ ´ Ia in total. Of the SNeIA that
LSST will detect, only a small fraction of those in the wide
field survey will have enough repeat visits for accurate light
curves to be measured. The latest simulations from the LSST
Observing Strategy White Paper predict on the order of

50,000 SN~ Ia yr 1- with accurate LSST light curves may be
achievable for certain observing strategies. In the interest of
motivating follow-up from other instruments, we consider
forecasts for different numbers of LSST-detected SNeIA
between those 50,000 yr 1~ - that LSST may obtain distances
for, up to the full number of 220,000 yr 1~ - .
In all cases (including the following section), we assume that

the LSST (and follow-up) observing strategy is designed so
that the SNeIA with good light curves are randomly
distributed within its wide footprint and that host redshifts
and spectroscopic classifications can be obtained for these. In
Section 5 we will discuss how the requirements for spectro-
scopic classification could be relaxed given accurate photo-
metric typing, and the possible impact of systematic errors this
could introduce. However, this is still an active area of research
and the accuracy of photometric classifiers in the era of LSST is
largely unknown, so for the purposes of our forecasts perfect
classification is assumed. We will also investigate SNIA that
may already have host redshifts from large galaxy surveys,
which is logical to prioritize for follow-up. While obtaining
light curves, host redshifts, and spectroscopic classifications for
all LSST-detected SNe IA is optimistic, the number of galaxy

4 This is a “living document,” so more specifically, we use Version 0.99.
d28199b found online athttps://github.com/LSSTScienceCollaborations/
ObservingStrategy/tree/master/whitepaper.
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redshifts is far below the number of targets observable with
next generation spectroscopic instruments and we expect nearly
100% of spectroscopic targets below z=0.2 (which have the
most accurate distances) to be “cheap” to obtain with a 1–2 m
telescope.5

3.2. Pre-selected SNeIa Hosts

For the second scenario, we consider LSST-detected SNeIa
for which host redshifts may have already been obtained by
large spectroscopic galaxy surveys prior to or during LSST
operations. These SNeIa can be used in addition to the full
spectroscopic galaxy sample to improve over the constraints
from RSD alone. As such, these targets are the logical choice
for additional follow-up if required, and many may already
have LSST distance measurements. This is especially true
considering, as we will show, the small number of SNe per year
and the constraining power they offer when combined with the
planned galaxy redshift surveys. In the following, we consider
the combined Taipan (da Cunha et al. 2017) and WALLABY
(Koribalski 2012) surveys, and a future spectroscopic sample
with target density similar to DESI/4MOST.

To predict the number of SNeIa, we combine a simulated
galaxy catalog with observationally constrained models for the
SNeIa rate as a function of stellar mass and SFR. Our
simulated catalog uses the Lagos et al. (2012) variant of the
semi-analytic model GALFORM (Cole et al. 2000), which was
run on merger trees constructed by Jiang et al. (2014) from the
Millennium N-body simulation (Springel et al. 2005) and has
an effective stellar mass limit of M108

. Lightcones of z 0.5<
and 1 16th full-sky area were constructed down to r 24.0<
using the algorithm described in Merson et al. (2013). Our
additional selection functions are then applied on top of this.
These lightcones reproduce the luminosity function and
number counts of galaxies quite well from the near-UV to
the IR (Gonzalez-Perez et al. 2014; Lagos et al. 2014; Lacey
et al. 2016). Both semi-analytic models and hydrodynamical
simulations typically give SFRs and colors that are up to 50%
too low and 0.1 mag too blue, respectively (e.g., Lacey et al.
2016; Mitchell et al. 2016). We find that artificially increasing
these in the simulation increases the number of SNeIa by

30%~ , which makes our forecasts conservative.
For the expected number of SNeIa in these galaxies, we use

Equation (5) from Smith et al. (2012). Figure 1 shows the
number of LSST-detected SNeIa and the total number of
galaxies in our simulation as a function of stellar mass and
specific SFR. As explained in Smith et al. (2012), large, late-
type galaxies are the dominant source of SNeIa. Massive,
passive galaxies are relatively inefficient producers of low-
redshift supernovae due to their old stellar populations, while
the SFR tends to evolve slowly with redshift, such that galaxies
with a high current SFR are likely to have had a high SFR in
the past, giving rise to the majority of SNeIa below z=0.5.

The total number of z 0.5< SNeIa from the simulation,
29.3 SN Ia deg 2- , is a factor of ∼4 lower than from the
volumetric rate in Section 3.1. This discrepancy stems from the
different methods for measuring the SNeIa rate and incon-
sistencies between measurements of the SFR and stellar mass
densities. For example, Smith et al. (2012) is consistent
(depending on the exact model used) with Dilday et al. (2010)

if one uses the measured densities of Hopkins & Beacom
(2008) to convert between the two. They are not if we use
the densities from our simulation or from more recent studies
(S. P. Driver et. al. 2017, in preparation). However, these
inconsistencies reduce the number of SNeIa in the simulation
relative to the volumetric rate (which is the simpler, and likely
more robust measurement) and even in this case, we find that
SNeIa can be used to significantly augment the growth rate
constraints from RSD alone.

3.2.1. Taipan and WALLABY

We first consider the number of redshifts we could already
have from the near-future Taipan and WALLABY surveys.
Starting in 2017, the Taipan galaxy survey on the 1.2 m UK
Schmidt Telescope will obtain optical spectra for over two
million z 0.4< galaxies across the southern sky ( 20d ,
b 10∣ ∣ ). The current design consists of a five year survey and
uses 150 spectroscopic fibers (with a proposed upgrade to 300)
spread across a 6° focal plane. The final data set will contain
both a magnitude limited i 17.0< sample and an LRG
extension satisfying i17.0 18.1< < and g i 1.6- > , and
this is the selection function we apply to our mock catalog. The
sky coverage of Taipan overlaps almost fully with that of LSST
and so we expect host redshifts to be already obtained for many
SNeIA whose host galaxies satisfy either of these selection
criteria. In addition to this, ∼50,000 of the galaxies Taipan
observes will have high enough signal to noise that they can be
placed on the FP and used as distance indicators. Prior to
the era of 4MOST/DESI and the opportunities presented
with LSST-detected SNeIA, this will be the largest single PV
survey, and of particular interest are those sources that will
have both FP distances and PVs measured using SNeIA.
Such a sample will allow for much greater control of
systematics in the PV measurements from both SN Ia and the
FP relationships.
Complementary to Taipan, the WALLABY survey (Koribalski

2012) is a planned 21 cm H I survey using the Australian SKA
Pathfinder, which will cover three-quarters of the full-sky
( 30d < ) up to z=0.25. Hence we expect full angular overlap
between this survey and LSST. The survey uses newly designed

Figure 1. Numbers of SNeIa (colored bins) and galaxies (gray contours) per
deg2 for our “pre-selected” scenario as a function of stellar mass and specific
SFR. The vertical dashed line denotes the effective resolution limit within our
simulation.

5 For a comparison of current and future surveys, seehttp://compare.icrar.
org/.
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phased array feeds with 30″ resolution over a frequency range of
1.13–1.43GHz, while still allowing for a large 30 deg2 field of
view. The nomimal 1s noise limit is expected to be
1.592 mJy km s 1- and in this work we consider all 5s sources.
WALLABY will be much more sensitive to low-redshift star-
forming galaxies than Taipan (see Figure 11 in da Cunha et al.
2017), which due to their high SFR are still relatively efficient
producers of SNeIA, and will measure redshifts to ∼500,000
galaxies, many of which will be missed by Taipan. As with
Taipan, a significant fraction of these (∼30,000) are also
expected to have PV measurements, this time determined via
the TF relation, which will also be useful for reducing
systematics.

From the selections for Taipan and WALLABY combined,
we find 1.0 SN Ia deg 2- and ∼18,000 galaxies hosting LSST-
detected SNeIa, assuming a full overlap area of 18,000 deg2.
Even accounting for the factor of four difference between our
volumetric rate based and simulation based predictions, this is
only ∼7200 SNe IA per year of LSST operation and so well
within the expected number that we could obtain with LSST
alone, or with minimal follow-up.

3.2.2. A Future Multi-object Spectroscopic Survey

We then see how many hosts could be obtained from a future
multi-object spectroscopic survey similar to DESI or 4MOST.
These two multi-pass instruments will have ∼5000 and ∼1600
usable fibers, respectively, spread over 7.5 deg2 and 4.1 deg2

fields of view (de Jong et al. 2012; Levi et al. 2013). We do not
tailor our selection to the requirements of any particular survey,
but find that a high efficiency (ratio of the number of SNe Ia per
target) is achieved with a selection close to that of the 4MOST
Bright Galaxy (BG) sample. For a magnitude limited sample,
J-band magnitudes allow for the highest efficiency; a J 19.0<
limit gives a target density of 951 deg 2- , 8.9 SN Ia deg 2- , and
0.9% of targets contain an LSST-detected SNIa. We can
slightly increase the efficiency using a u−g color cut. A
sample consisting of J 18.5< , plus an extension to J 20.0<
with u g 0.9- < gives a similar target density, but increases
the SNeIa density to 9.7 SN Ia deg 2- . For comparison,

observing the same target density but distributed randomly
below J 20.0< gives 7.1 SN Ia deg 2- , a decrease in efficiency
of 30%~ . Overall, we predict ∼160,000 SN Ia detected by
LSST, which could have host redshifts from a future J 19.0<
survey across 18,000 deg2. Again, this number is small enough
that a large fraction of such SNeIA could have light curves
measured by LSST, although follow-up will likely be required
to reach the full number, and we advocate prioritizing these
targets that already have host galaxy redshifts.
Our two selections are summarized in Figure 2, where we

plot the number of targets and SNeIa per deg2, and
the efficiency as a function of J-band magnitude. We also
show the u−g color against J-band magnitude, highlighting
the area we would preferentially target. Beyond our current
selection the efficiency begins to fall significantly, hence
obtaining additional host redshifts using dedicated programs
may be preferable to a fainter pre-selection on planned large
galaxy surveys.
The total number of galaxies and SN Ia as a function of

redshift for all of our selections is shown in Figure 3. The
Taipan and Wallaby surveys will measure many host redshifts
for low-redshift SNeIA; however, this quickly drops off due to
the sensitivity of these surveys. For a future multi-object
spectroscopic survey, the number of SNeIA hosts we will
obtain redshifts for remains high even up to z=0.5, as the
selections we consider mainly miss fainter or less star-forming
galaxies, which are less efficient producers of SNeIA. These
numbers of SNeIA are used as input for our forecasts in the
following section.
Unfortunately, there is no current or planned photometry

across the full southern hemisphere that could achieve our color
selection. The current best option, the SkyMapper survey
(Keller et al. 2007) will only go as faint as u g20.7, 21.7= = .
Including these constraints (and re-examining the other
photometric bands under similar limits) shows that a complex
selection would be required to improve beyond a simple
J 19.0< sample. Hence, this is the one we present in our
forecasts.

Figure 2. (a) Numbers of SNeIa, galaxies and the efficiency of SNIa production per deg2 per bin of 0.1 dex for our “pre-selected” scenario as a function of J-band
magnitude, for the full catalog (orange) and our ideal pre-selection (blue). We also give the total numbers for these selections. (b) Numbers of SNeIa (colored bins)
and galaxies (gray contours) as a function u−g color and J-Band magnitude. In both cases shaded regions indicate the area we choose as our optimal selection:
J 18.5< plus an extension to J 20.0< with u g 0.9- < .
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4. Fisher Matrix Forecasts on the Growth Rate

4.1. Method

We forecast the constraints on the growth rate using the Fisher
matrix method of Howlett et al. (2017a), modeling the
information contained in the two-point correlations between
the density field measured using the galaxy redshifts and the
velocity field from the SNIa PVs. We have updated the Howlett
et al. (2017a) models to account for the redshift dependence of
the power spectra, growth rate, and galaxy bias, but otherwise
the method remains unchanged. As such, we present only a brief
overview here and we refer the reader to Howlett et al. (2017a)
for a more complete description. The version of the code used to
produce the growth rate forecasts in this paper is publicly
available at https://github.com/CullanHowlett/PV_fisher.

For given parameters of interest l, we compute the
corresponding elements of the Fisher Matrix F, as

F r dr k dk d
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comoving distances corresponding to the upper (lower) redshift
limits of each redshift bin, and we set k h0.2 Mpcmax

1= - and
k r2min maxp= . mf is the cosine of the angle f between the
k-vector and the observer’s line of sight.

The covariance matrix,C consists of the anisotropic density–
density, density–velocity, and velocity–velocity power spectra
Pdd, P vd , and Pvv respectively, as well as the noise associated
with each of these,

r k

P r k
n r

P r k

P r k P r k
r

n r

, ,

, ,
1

, ,

, , , ,

. 7

v

v vv
v

obs
2

C m

m m

m m
s

=

+

+

f

dd f
d

d f

d f f

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

( )

( )
¯ ( )

( )

( ) ( ) ( )
¯ ( )

( )

The shot noise in these measurements is inversely proportional
to the galaxy number density n rd¯ ( ) for the density field, and to
the average PV error divided by the SN Ia number density
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We have written the above models in terms of the redshift
corresponding to a given comoving distance z(r) (H(z) is the
Hubble parameter at this redshift) and in a particular way to
highlight the parameters of interest f z z8l s= { ( ) ( ), zb ( ), sd, vs }.
The power spectra P k z,mm ( ), P k z,mq ( ), and P k z,qq ( ) are the real-
space matter and velocity divergence auto- and cross-power
spectra for the dark matter field and are computed using the
implementation of two-loop Renormalized Perturbation Theory
(Crocce & Scoccimarro 2006) found in the COPTER numerical
package (Carlson et al. 2009).
The combination f z z8s( ) ( ) is the normalized growth rate

that we present forecasts for in this work. We use this
combination, as both f and 8s are degenerate on linear scales;
however, their combination can still be used to constrain
gravitational models even without explicit knowledge of 8s
(Song & Percival 2009) and is what is typically measured using
RSD and PV surveys. z f z b zb =( ) ( ) ( ) is the ratio of the
growth rate over the galaxy bias and here is treated as one of
the nuisance parameters we marginalize over. We also
marginalize over two additional nuisance parameters, sd and

vs , which characterize the nonlinear damping of the density and
velocity fields due to RSD. These are used as inputs to
Lorenztian (for the density field) and sinc (for the velocity
field) functions, which reduce the power spectra on small scales
but leave them unchanged on large scales. For these parameters
we adopt the same values as used in Howlett et al. (2017a),

h4.24 Mpc1s =d
- and h13.0 Mpcv

1s = - , which were found
to reproduce the effects of nonlinear RSD in simulations (Koda
et al. 2014).

Figure 3. Numbers of SNeIa and targets per deg2 per dz=0.01 bin for our
“pre-selected” scenario as a function of redshift for all objects and for the three
selections given in Section 3.2.
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The redshift dependence of the normalized growth rate and
bias is included using f z z z z D z0m8

0.55
8s s= W =( ) ( ) ( ) ( ) ( )

and b z b z D z0 1= = -( ) ( ) ( ), with D(z) given by Equation (1)
for a z1 1= +( ) and normalized to unity at z=0. Comput-
ing the necessary nonlinear real-space power spectra is slow, so
the redshift dependence is captured by interpolating the power
P k z,( ) at each k from a set of precomputed power spectra in
the range of z 0.0, 0.5= [ ] with z 0.05D = . We do not include
any redshift dependence in sd or vs .

We compute forecasts for the selections presented in
Section 2; the volumetric rate with varying numbers of SNeIA
with measured light curves and the number of SNeIA with
host redshifts from Taipan, WALLABY, and a J 19.0<
survey. We compare these to the constraints using only RSD
measured in the DESI-BG and 4MOST-BG surveys, i.e., where
only the P r k, , mdd f( ) element of r k, ,C mf( ) is non-zero. For
all surveys, we assume a value for the galaxy bias
b z 0 1.34= =( ) to allow for a simpler comparison between
results. The sky area for the SNeIA surveys is taken to be
18,000 deg2, while we use 15,000 deg2 for the RSD surveys,
which closely matches the current design of 4MOST and DESI.
For all SNeIa samples, we consider distance errors of both
10% ( 0.1a = ) and 5%.

We do not account for potential systematic errors in any of
our forecasts; however, a discussion of how SNIa systematics
could affect measurements of the growth rate is given in
Section 5.

4.2. Results

The percentage errors on the normalized growth rate, f 8s in
bins of z 0.05D = between z=0.0 and z=0.5, and for the
full redshift range, are listed in Table 1. The volumetric rate
forecasts listed are those for the two limiting cases of only
SNeIA that we expect to have light curves measured with

LSST and for all LSST-detected SNeIA. For both of these we
also give constraints from RSD only, i.e., the constraints using
only the redshifts of the SNeIA to measure the density–density
power spectrum, neglecting the additional information from
their light curves. This shows the relative improvement when
SNeIA PVs are added. For the SNeIA samples with pre-
existing redshifts (last two columns), we emphasize that the
constraints are from a combination of all the measured redshifts
for these samples plus the much smaller number of SNeIA that
add to the growth rate constraints from RSD alone.
We find similar constraints for the DESI-BG and 4MOST-BG

surveys, reflecting their similar design and the fact that, as they
only use RSD, these surveys quickly reach the cosmic variance
limit at low redshift. The SNeIa PVs allow us to break this limit
as they sample the same underlying structure as the RSD
measurements. This is most apparent at the lowest redshifts,
where the volumetric rate predictions show a factor of ∼2
improvement over the RSD constraints, and where the J 19.0<
sample has significantly better constraints even though the
selection function is similar to that of the 4MOST-BG sample.
The fractional errors for the RSD-only 4MOST-BG sample,

all LSST-detected SNeIa and our two samples where we only
use SNeIA that are likely to already have host redshifts are
plotted in Figure 4. The right-hand panel of this Figure then
compares the LSST-detected SNeIa constraints with and
without SNeIA PVs against current measurements and the
predictions from different models of gravity. For SNeIa
that are likely to already have host redshifts, the Taipan+
WALLABY+SNIa sample achieves better constraints than
4MOST or DESI below z 0.15» , but at higher redshifts the
number of galaxies drops significantly resulting in poor
constraining power. For the J 19.0< sample the constraints
are again comparable or better than with RSD-only for all
redshift bins. This is because at low redshift the SNeIa provide

Table 1
Forecasts for the Percentage Error on the Normalized Growth Rate f 8s for the RSD-only 4MOST-BG and DESI-BG Surveys and for Samples Containing LSST

SNeIa

Redshift
DESI-
BGsa

4MOST-
BGsb

All LSST-detected
SNeIac,d

LSST Light Curves
Onlyc,e

Taipan+WALLABY
+SNIac,f J 19.0< +SNIac,g

RSD-only RSD-only
RSD-
onlyh RSD+PVs

RSD-
onlyh RSD+PVs RSD+PVs RSD+PVs

z0.00 0.05< < 56.8 57.1 66.3 20.1 (13.9) 106.6 41.0 (27.5) 25.4 (16.6) 24.3 (15.7)
z0.05 0.10< < 21.5 21.6 24.6 11.5 (7.3) 38.5 22.7 (14.6) 15.9 (11.4) 14.6 (9.8)
z0.10 0.15< < 13.2 13.2 14.8 9.0 (5.8) 22.6 16.6 (11.4) 11.8 (10.4) 10.6 (8.3)
z0.15 0.20< < 9.6 9.7 10.6 7.5 (5.0) 15.8 13.0 (9.5) 9.1 (8.6) 8.2 (6.9)
z0.20 0.25< < 7.7 7.6 8.3 6.3 (4.4) 12.1 10.5 (8.2) 7.4 (7.2) 6.7 (6.0)
z0.25 0.30< < 6.5 6.4 6.8 5.5 (4.0) 9.8 8.8 (7.1) 7.2 (7.1) 5.7 (5.3)
z0.30 0.35< < 5.8 5.5 5.8 4.9 (3.7) 8.2 7.6 (6.4) 8.3 (8.3) 5.0 (4.8)
z0.35 0.40< < 5.5 5.0 5.1 4.4 (3.4) 7.1 6.7 (5.7) 13.9 (13.9) 4.5 (4.4)
z0.40 0.45< < 5.9 4.8 4.6 4.1 (3.2) 6.3 6.0 (5.2) … 4.2 (4.2)
z0.45 0.50< < 10.9 5.8 4.2 3.8 (3.0) 5.7 5.4 (4.8) … 4.1 (4.0)

0.00<z<0.50 2.5 2.2 2.1 1.8 (1.3) 2.9 2.7 (2.2) 3.4 (3.2) 1.9 (1.7)

Notes. The bold values are the constraints using information across the full redshift range.
a Using number densities from DESI Collaboration et al. (2016). Redshifts for all galaxies, no PVs.
b Using the number density of objects expected in the 4MOST-BG survey. Redshifts for all galaxies, no PVs.
c Assuming 10% (5%) distance errors.
d For all SNeIA detected by LSST as described in Section 3.1, assuming accurate light curves, redshifts, and PVs (from LSST or otherwise) from every SNIA.
e Assuming redshifts and PVs from only the 50,000 SN~ Ia yr 1- , detailed in Section 3.1, that could have accurate light curves from LSST alone.
f For the Taipan+WALLABY target selection in Section 3.2.1. Redshifts for all TAIPAN+WALLABY galaxies. PVs from the ∼18,000 SNeIA found in those galaxies.
g For the J 19.0< selection in Section 3.2.2. Redshifts for all J 19.0< galaxies. PVs from the ∼160,000 SNeIA found in those galaxies.
h Constraints when only the redshifts are used, regardless of available light-curve measurements.
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an increase in constraining power, while at high redshift we
still obtain large numbers of galaxies and can constrain the
growth rate via RSD, using the SNe Ia to break the degeneracy
with any nuisance parameters.

In Figure 5, we demonstrate how the growth rate predictions
change as we increase the number of SNeIA with distance
measurements beyond those we are likely to obtain with LSST
alone. We also plot the intersect of the fractional error as a
function of the number of SNeIA in each redshift bin with the
prediction using RSD from the 4MOST-BG sample. This
intersect point highlights how many SNeIA with measured

distances we would require in each redshift bin to improve over
the constraint from 4MOST using RSD.
We find that, assuming 5% distance errors, the SNeIA

distances we could obtain with LSST are already sufficient to
improve over the RSD constraints below z=0.15 and that
measuring light curves to similar accuracy for only a modest
fraction of the remaining LSST-detected SNeIA allows for
superior constraints across the full redshift range we consider.
For 10% distance errors, the required number of SNeIA is
larger, but we can still improve on the 4MOST-BG constraints
for all redshift bins using some fraction of the total number of

Figure 4. Forecasts for our three SNeIa samples assuming 5% distance errors. (a) Fractional errors as a function of redshift plotted against the 4MOST-BG sample.
(b) A comparison of the volumetric rate forecasts for all LSST-detected SNeIA (red squares) against existing measurements (Blake et al. 2011a, 2011b; Beutler et al.
2012; de la Torre et al. 2013; Oka et al. 2014; Howlett et al. 2015; Alam et al. 2017) and predictions from Planck (Planck Collaboration et al. 2016; normalized at the
redshift of recombination) with different values for γ. These f 8s predictions as a function of redshift are calculated self-consistently using the method in Howlett et al.
(2015) (Equations (26)–(30) therein), which accounts for the fact that the growth factor cannot be evaluated from Equation (1) for different values of γ. The outer
error-bars for the volumetric rate measurements show RSD-only constraints (using only the redshift measurements of the SNe IA and neglecting their light curves); the
inner show those including SNeIa PVs. This highlights the redshift-dependent improvement due to the SNeIa PVs.

Figure 5. Forecasts for the fractional error on the growth rate as a function of SNeIa with precise distance determinations, assuming distance errors of 10% (left) and
5% (right). Although survey-independent, the lower limit of the x-axis is equivalent to the SNeIA we expect to have light curves measured by LSST itself, while the
upper limit is the expected number detected by LSST (for which distance measurements would require additional follow-up). Different lines represent different
redshift bins of width z 0.05D = . Points represent the intercept of each line with the RSD-only forecasts for the 4MOST-BG survey, and so allow us to infer the
number of distance measurements necessary to improve over the 4MOST-BG constraints in each bin. Finally, open symbols represent cases where the light curves we
expect from LSST alone already have greater predicted constraining power than 4MOST.
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SNeIA LSST will detect. We emphasize here that, unlike our
J 19.0< predictions, the total number of objects (with SNe IA
light curves and redshifts) even for all LSST detections is a
factor of ∼4 less than the number of galaxies in the 4MOST or
DESI-BG samples, which demonstrates the superior constrain-
ing power of the PV measurements.

We do not consider forecasts beyond z=0.5 because at
higher redshift the SNeIa distance errors become large and the
majority of the growth rate information comes from RSD (see
Figure 4). While at z=0.5, SNeIa still help in marginalizing
over the nuisance parameters, the constraining power of DESI
and 4MOST improves significantly beyond this due to the large
cosmological volumes they can probe with their Luminous Red
Galaxy and Emission Line Galaxy samples. Combined, these
can also be used to break the cosmic variance limit in the same
way as a sample of SNeIa. Hence the SNeIa samples quickly
become less competitive.

5. Systematics

In our analysis, we have assumed spectroscopic classifica-
tion of the supernovae and have not included SNIa systematics
such as flux calibration or extinction correction errors,
misclassification or the incorrect assignment of SNIa to their
host galaxies. The ability of photometric estimators to classify
supernovae given LSST quality data and the magnitude of any
systematic effects expected within LSST is currently under
investigation but has not been clearly defined and so has not
been included quantitatively in the forecasts we have presented.
Here we provide a qualitative discussion of the need for
spectroscopic classification and how we expect different
systematic effects to manifest in measurements of the growth
rate using the two-point correlations of the SNeIA PVs. A
more rigorous analysis, measuring the velocity power spectrum
using simulations of SNe IA as detected by LSST and
including such systematic effects is left for future work.

5.1. SNeIA Measurement Systematics

Systematic errors within the flux calibration or extinction
correction for a sample of SNeIA can be described via a
limiting systematic “error floor” in each redshift bin or across
the full SNeIa sample (Linder & Huterer 2003; Kim &
Linder 2011), such that for large numbers of SNeIA, the error
on the mean distance measured in a given redshift bin does not
continue to decrease purely in proportion to the square root of
number of SNeIA. A systematic offset in the distance modulus
resulting from this systematic error would act as an error on the
zero-point of the SNeIA PVs, which is also present with other
methods used to estimate PVs such as the TF and FP relations.

This is an issue for measurements of the bulk flow, where the
zero-point acts in the same way as the bulk motion of the local
universe, and a systematic error can bias bulk flow constraints.
However, the velocity power spectrum is sensitive to the
variance of the PVs as opposed to the mean, which is limited
by the intrinsic dispersion in the distance indicator. In this way,
Howlett et al. (2017a) showed that errors in the zero-point
simply act as additional shot-noise in the velocity power
spectrum and as long as the systematic errors are small
compared to the intrinsic scatter, the effect of this on growth
rate constraints is negligible. Alternatively, the additional shot-
noise component can be marginalized over analytically and at
little cost to the growth rate constraints (Johnson et al. 2014;

Howlett et al. 2017b). In terms of quantities relevant to
SNeIA, Linder & Huterer (2003) and Kim & Linder (2011)
consider a systematic error in the distance modulus of around

0.03syss » with some dependence on redshift. This is
significantly less than even the lowest intrinsic dispersion we
use in this work and might expect for future SNeIA, 0.1ints »
and so we expect that the precision of the growth rate forecasts
presented here will be unaffected by the inclusion of this
systematic error.

5.2. Photometric Classification and Associated Systematics

Photometric classification of supernovae is an active area of
study, with high-redshift supernova searches such as those in
the Dark Energy Survey (The Dark Energy Survey Collabora-
tion 2005) and LSST planning to perform photometric
classification to define their cosmological samples (i.e.,
Campbell et al. 2013). However, current photometric classi-
fiers, either template-based (e.g., Sako et al. 2011) or using
machine learning (e.g., Lochner et al. 2016) are not perfect and
introduce both systematic errors and potential biases into
cosmological studies. A particularly subtle problem is that the
very features useful for photometric classification: flux, color,
light-curve shape, etc., are the same statistics used to determine
supernova distances. This leads to strong covariance between
an objects classification and distance measurement, whose
impact in cosmological studies has yet to be studied in full. As
the effects of these on LSST quality data and cosmological
analyses in general is still not well understood, we have
assumed for simplicity that we get spectroscopic redshifts of
the host galaxies and classification of the supernova itself in our
forecasts. This also negates the effects of SNe misclassification
and host misidentifications. In the absence of spectroscopic
classification, we would expect systematic errors due to both of
these and discuss their expected impact on our forecasts below.
Overall, the requirements for spectroscopic follow-up for
measuring accurate SN Ia PVs may be relaxed, depending on
progress in photometric classification over the coming years.

5.2.1. Misclassification

Misclassification of supernovae as SNeIA leads to con-
tamination in the sample and incorrect distance inference.
Photometric estimators typically also miss some fraction of true
SNeIA. Accounting for completeness or false positives in the
photometric classification of the SNeIA in our forecasts would
reduce the total number of usable SNeIA, increase the shot-
noise in our measurements of the velocity power spectrum, and
reduce the constraints on the growth rate. However, the factor
of 0.4 we have used in this work as the fraction of SNeIA
LSST will detect pre-peak luminosity already carries consider-
able uncertainty, such that the effects of completeness on our
growth rate forecasts are likely small compared to the current
uncertainty in the factor of usable SNeIA we have assumed.
Furthermore, we have provided forecasts assuming distance
errors of both 5% and 10%, which can include contributions
from both statistical and systematic errors. Even with the
effects of misclassification of SNe, we consider distance errors
of 10% to be conservative. Finally, it is worth noting that Type
II-P SNe also show promise as “standardizable” candles
(D’Andrea et al. 2010; de Jaeger et al. 2017) in the z 0.5<
universe, and are expected to be detected in even greater
numbers with LSST than SNeIA (Ivezic et al. 2008). PVs from
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such a sample have the potential to significantly improve over
the forecasts presented here for SNeIA alone, even accounting
for completeness and systematic errors.

5.2.2. Host Misidentification

While spectroscopic classification also provides a supernova
redshift whose consistency can be tested with that of the
purported host, the lack of that consistency test leads to
misidentification of the host galaxy (Gupta et al. 2016). In the
event that the true and assumed host galaxy are physically
close, this is not an issue for PV measurements. In fact, a
common practice is to use group galaxy catalogs measured
from redshift surveys (i.e., Crook et al. 2007) to assign identical
redshifts to PV targets belonging to the same group, which
partially removes the effects of nonlinear motion on the
measured PVs (Hong et al. 2014; Springob et al. 2014). In this
sense, the SNeIA would be given the same observed redshift
regardless of the host it is assigned to.

In the case of incorrect assignment of SNeIA to host
galaxies that are close in angular separation but physically far
apart, we expect to be able to remove these after the PVs have
been measured. On linear scales, the PVs (excluding statistical
errors) are expected to be Gaussian distributed. Hence, for
physically distinct galaxies, the difference between the redshift
distance and the true distance SNeIA measurements is likely to
lead to an abnormally large PV, which can be then be removed
via sigma-clipping, as was done for TF-based PVs in Howlett
et al. (2017b).

6. Conclusions

We have demonstrated that LSST SNeIa could provide
measurements of the z 0.5< growth rate that are more precise
than those available using only RSD from DESI or 4MOST.
Our best constraints come from the case where we are able to
obtain host redshifts, light curves, and spectroscopic classifica-
tion for all 2.2 106~ ´ LSST-detected SNeIa, based on the
volumetric SNeIa rate from Dilday et al. (2010). There is
currently no planned survey that can accomplish this; LSST
is expected to obtain sufficiently accurate light curves for
at most ∼500,000 of these; however, the target density,

12 deg yr2 1~ - - , is small and could be accommodated as part
of a larger survey program. We have also relaxed this condition
and looked at how many SNeIA would be required to achieve
constraints comparable to those from DESI or 4MOST at
various redshifts, finding that SNeIA with light curves
measured from LSST alone could do better than RSD below
z=0.15, given accurate classification and host redshifts. We
expect many of these local SNeIA to already have host
redshifts from upcoming galaxy redshift surveys.

To further explore this, we have combined simulated galaxy
catalogs with a prescription for the SNeIa rate as a function of
stellar mass and SFR and explored those SNeIa that could
already have host redshifts from upcoming large galaxy
surveys. Our test cases include Taipan, WALLABY, and a
future multi-object spectroscopic survey. We find that a
J 19.0< magnitude limited sample could obtain ∼160,000
host redshifts. Although the number of SNeIa is much smaller
than the volumetric rate, predictions for the growth rate from
this sample still outperforms those using only RSD with DESI
or 4MOST. Hence, variations of the 4MOST or DESI target
selections could allow for a large number of host redshifts that

can be used to significantly augment and improve the
constraining power of these surveys.
In this work, our primary aim is to motivate further

consideration of the potential of LSST-detected SNeIA to
measure the growth rate and test gravity. As such, we have
assumed spectroscopic classification for our SNe and ignored
potential systematic effects. This is also partly driven by our
limited current understanding of both the ability of LSST
quality photometry to overcome these effects and the
covariance and bias introduced into measurements of SNeIA
distances when using photometric classification methods. We
have discussed how we expect various measurement systema-
tics to manifest in measurements of the growth rate and
anticipate that the assumption of spectroscopic classification
can be relaxed as photometric estimators progress. Future
studies will allow us to quantify the effects of various
systematics and classification algorithms on the velocity power
spectrum we will measure with LSST SNeIA, and this work
motivates a careful study of these in the context of testing
gravity.
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