62 research outputs found

    Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy

    Get PDF
    miRNAs are important regulators of biological processes in many tissues, including the differentiation and function of brown and white adipocytes. the endoribonuclease dicer is a major component of the miRNA-processing pathway, and in adipose tissue, levels of dicer have been shown to decrease with age, increase with caloric restriction, and influence stress resistance. Here, we demonstrated that mice with a fat-specific KO of dicer develop a form of lipodystrophy that is characterized by loss of intra-abdominal and subcutaneous white fat, severe insulin resistance, and enlargement and whitening of interscapular brown fat. Additionally, KO of dicer in cultured brown preadipocytes promoted a white adipocyte-like phenotype and reduced expression of several miRNAs. Brown preadipocyte whitening was partially reversed by expression of miR-365, a miRNA known to promote brown fat differentiation; however, introduction of other miRNAs, including miR-346 and miR-362, also contributed to reversal of the loss of the dicer phenotype. Interestingly, fat samples from patients with HIV-related lipodystrophy exhibited a substantial downregulation of dicer mRNA expression. Together, these findings indicate the importance of miRNA processing in white and brown adipose tissue determination and provide a potential link between this process and HIV-related lipodystrophy.NIHEllison FoundationJoslin Diabetes and Endocrinology Research Center coresMary K. Iacocca ProfessorshipAcademy of FinlandSigrid Juselius FoundationFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Harvard Univ, Sch Med, Joslin Diabet Ctr, Sect Integrat Physiol & Metab, Boston, MA 02115 USAUniversidade Federal de São Paulo, Dept Biophys, São Paulo, BrazilUniversidade Federal de São Paulo, Program Mol Biol, São Paulo, BrazilAstraZeneca R&D, Cardiovasc & Metab Dis iMed, Molndal, SwedenUniv Helsinki, Dept Med, Helsinki, FinlandMinerva Fdn, Inst Med Res, Helsinki, FinlandUniv Massachusetts, Sch Med, Program Mol Med, Worcester, MA USAMassachusetts Gen Hosp, Program Nutr Metab, Boston, MA 02114 USAHarvard Univ, Sch Med, Boston, MA USAUniversidade Federal de São Paulo, Dept Biophys, São Paulo, BrazilUniversidade Federal de São Paulo, Program Mol Biol, São Paulo, BrazilNIH: DK082659NIH: DK033201NIH: AI060354NIH: DK040561NIH: U24-DK093000Joslin Diabetes and Endocrinology Research Center cores: DK036836FAPESP: 2010/52557-0Web of Scienc

    ADRA1A-Gα<sub>q</sub> signalling potentiates adipocyte thermogenesis through CKB and TNAP

    Get PDF
    Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis(1). Aside from cAMP signalling downstream of β-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α(1)-adrenergic receptor (AR) and β(3)-AR signalling induces the expression of thermogenic genes of the futile creatine cycle(2,3), and that early B cell factors, oestrogen-related receptors and PGC1α are required for this response in vivo. NA triggers physical and functional coupling between the α(1)-AR subtype (ADRA1A) and Gα(q) to promote adipocyte thermogenesis in a manner that is dependent on the effector proteins of the futile creatine cycle, creatine kinase B and tissue-non-specific alkaline phosphatase. Combined Gα(q) and Gα(s) signalling selectively in adipocytes promotes a continual rise in whole-body energy expenditure, and creatine kinase B is required for this effect. Thus, the ADRA1A–Gα(q)–futile creatine cycle axis is a key regulator of facultative and adaptive thermogenesis
    corecore