43 research outputs found

    The Mistic, November 5, 1926

    Get PDF
    https://red.mnstate.edu/mistic/1048/thumbnail.jp

    Abuse Liability Profile of Three Substituted Tryptamines

    No full text
    The abuse liability profile of three synthetic hallucinogens, N,N-diisopropyltryptamine (DIPT), 5-N,N-diethyl-5-methoxytryptamine (5-MeO-DET), and 5-methoxy-α-methyltryptamine (5-MeO-AMT), was tested in rats trained to discriminate hallucinogenic and psychostimulant compounds, including cocaine, methamphetamine, 3,4-methylenedioxymethylamphetamine (MDMA), lysergic acid diethylamide (LSD), (−)-2,5-dimethoxy-4-methylamphetamine (DOM), and dimethyltryptamine (DMT). Because abused hallucinogens act at 5-hydroxytryptamine 1A (5-HT1A) and 5-HT2A receptors, and abused psychostimulants act at monoamine transporters, binding and functional activities of DIPT, 5-MeO-DET, and 5-MeO-AMT at these sites were also tested. DIPT fully substituted in rats trained to discriminate DMT (ED50 = 1.71 mg/kg) and DOM (ED50 = 1.94 mg/kg), but produced only 68% LSD-appropriate responding. 5-MeO-DET fully substituted for DMT (ED50 = 0.41 mg/kg) and produced 59% MDMA-appropriate responding. 5-MeO-AMT did not fully substitute for any of the training drugs, but produced 67% LSD-appropriate responding. None of the compounds produced substitution in rats trained to discriminate cocaine or methamphetamine. All three compounds showed activity at 5-HT1A and 5-HT2A receptors as well as blockade of reuptake by the serotonin transporter. In addition, 5-MeO-AMT produced low levels of serotonin release and low potency blockade of dopamine uptake. DIPT, 5-MeO-DET, and 5-MeO-AMT produced behavioral and receptor effects similar to those of abused hallucinogens, but were not similar to those of psychostimulants. DIPT and 5-MeO-DET may have abuse liability similar to known hallucinogens and may be hazardous because high doses produced activity and lethality

    Synthesis and Discovery of Arylpiperidinylquinazolines: New Inhibitors of the Vesicular Monoamine Transporter

    No full text
    Methamphetamine, a human vesicular monoamine transporter 2 (VMAT2) substrate, releases dopamine, serotonin, and norepinephrine from vesicles into the cytosol of presynaptic neurons and induces reverse transport by the monoamine transporters to increase extracellular neurotransmitters. Currently available radioligands for VMAT2 have considerable liabilities: The binding of [3H]­dihydro­tetrabenazine ([3H]­DHTB) to a site on VMAT2 is not dependent on ATP, and [3H]­reserpine binds almost irreversibly to VMAT2. Herein we demonstrate that several arylpiperidinyl­quinazolines (APQs) are potent inhibitors of [3H]­reserpine binding at recombinant human VMAT2 expressed in HEK-293 cells. These compounds are biodiastereoselective and bioenantioselective. The lead radiolabeled APQ is unique because it binds reversibly to VMAT2 but does not bind the [3H]­DHTB binding site. Furthermore, experimentation shows that several novel APQ ligands have high potency for inhibition of uptake by both HEK-VMAT2 cells and mouse striatal vesicles and may be useful tools for characterizing drug-induced effects on human VMAT2 expression and function

    Design, Synthesis, and Evaluation of 10-N-Substituted Acridones as Novel Chemosensitizers in Plasmodium falciparum▿

    Get PDF
    A series of novel 10-N-substituted acridones, bearing alkyl side chains with tertiary amine groups at the terminal position, were designed, synthesized, and evaluated for the ability to enhance the potency of quinoline drugs against multidrug-resistant (MDR) Plasmodium falciparum malaria parasites. A number of acridone derivatives, with side chains bridged three or more carbon atoms apart between the ring nitrogen and terminal nitrogen, demonstrated chloroquine (CQ)-chemosensitizing activity against the MDR strain of P. falciparum (Dd2). Isobologram analysis revealed that selected candidates demonstrated significant synergy with CQ in the CQ-resistant (CQR) parasite Dd2 but only additive (or indifferent) interaction in the CQ-sensitive (CQS) D6. These acridone derivatives also enhanced the sensitivity of other quinoline antimalarials, such as desethylchloroquine (DCQ) and quinine (QN), in Dd2. The patterns of chemosensitizing effects of selected acridones on CQ and QN were similar to those of verapamil against various parasite lines with mutations encoding amino acid 76 of the P. falciparum CQ resistance transporter (PfCRT). Unlike other known chemosensitizers with recognized psychotropic effects (e.g., desipramine, imipramine, and chlorpheniramine), these novel acridone derivatives exhibited no demonstrable effect on the uptake or binding of important biogenic amine neurotransmitters. The combined results indicate that 10-N-substituted acridones present novel pharmacophores for the development of chemosensitizers against P. falciparum
    corecore