13 research outputs found

    Cells of the human intestinal tract mapped across space and time

    Get PDF
    Acknowledgements We acknowledge support from the Wellcome Sanger Cytometry Core Facility, Cellular Genetics Informatics team, Cellular Generation and Phenotyping (CGaP) and Core DNA Pipelines. This work was financially supported by the Wellcome Trust (W1T20694, S.A.T.; 203151/Z/16/Z, R. A. Barker.); the European Research Council (646794, ThDefine, S.A.T.); an MRC New Investigator Research Grant (MR/T001917/1, M.Z.); and a project grant from the Great Ormond Street Hospital Children’s Charity, Sparks (V4519, M.Z.). The human embryonic and fetal material was provided by the Joint MRC/Wellcome (MR/R006237/1) Human Developmental Biology Resource (https://www.hdbr.org/). K.R.J. holds a Non-Stipendiary Junior Research Fellowship from Christ’s College, University of Cambridge. M.R.C. is supported by a Medical Research Council Human Cell Atlas Research Grant (MR/S035842/1) and a Wellcome Trust Investigator Award (220268/Z/20/Z). H.W.K. is funded by a Sir Henry Wellcome Fellowship (213555/Z/18/Z). A.F. is funded by a Wellcome PhD Studentship (102163/B/13/Z). K.T.M. is funded by an award from the Chan Zuckerberg Initiative. H.H.U. is supported by the Oxford Biomedical Research Centre (BRC) and the The Leona M. and Harry B. Helmsley Charitable Trust. We thank A. Chakravarti and S. Chatterjee for their contribution to the analysis of the enteric nervous system. We also thank R. Lindeboom and C. Talavera-Lopez for support with epithelium and Visium analysis, respectively; C. Tudor, T. Li and O. Tarkowska for image processing and infrastructure support; A. Wilbrey-Clark and T. Porter for support with Visium library preparation; A. Ross and J. Park for access to and handling of fetal tissue; A. Hunter for assistance in protocol development; D. Fitzpatrick for discussion on developmental intestinal disorders; and J. Eliasova for the graphical images. We thank the tissue donors and their families, and the Cambridge Biorepository for Translational Medicine and Human Developmental Biology Resource, for access to human tissue. This publication is part of the Human Cell Atlas: https://www.humancellatlas.org/publications.Peer reviewedPublisher PD

    Cells of the human intestinal tract mapped across space and time.

    Get PDF
    Funder: Medical Research CouncilThe cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung's disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Sex difference in association between cognitive and P50 deficits in patients with chronic schizophrenia

    No full text
    A large number of studies have reported that sensory gating disorders represented by P50 inhibition may be involved in the pathophysiological process of schizophrenia. However, few studies have explored the relationship between sensory gating disorders and cognitive dysfunction in patients with schizophrenia. This study aimed to explore sex differences in the relationship between cognitive and P50 deficits in patients with chronic schizophrenia, which has not been reported. A total of 183 chronic schizophrenia patients (128 males and 55 females) and 166 healthy controls (76 males and 90 females) participated in this study. The MATRICS Consensus Cognitive Battery (MCCB) was measured for cognitive function and P50 components for the sensory gating in all participants. The Positive and Negative Syndrome Scales (PANSS) was used to assess the psychopathological symptoms in patients. Female patients performed significantly better than male patients in several cognitive domains of MCCB (all p 0.05). Further analysis showed that in female patients, latency of S2 was negatively correlated with reasoning and problem-solving domain of MCCB (p < 0.05), and P50 ratio was negatively correlated with social cognition domain of MCCB (p < 0.05). In male patients, there was no any correlation between P50 and cognitive domains of MCCB. Our results suggest that there is a sex difference in the association between P50 deficiency and cognitive impairment in Chinese Han patients with schizophrenia

    Hemostatic markers are associated with the risk and prognosis of atrial fibrillation: The ARIC study

    No full text
    BACKGROUND: Various hemostatic markers are associated with the risk of cardiovascular disease; however, limited information exists on their relationship with the occurrence and prognosis of atrial fibrillation (AF). OBJECTIVES: To assess whether hemostatic markers are associated with the incidence and prognosis of AF. METHODS: We studied 14,858 men and women in the Atherosclerosis Risk in Communities cohort, aged 45–64 and free of AF at baseline (1987–1989). Fibrinogen, von Willebrand factor (vWf), factor VII activity (VIIc), factor VIII activity (VIIIc), protein C, antithrombin III (ATIII), and activated partial thromboplastin time (aPTT) were measured in blood samples at baseline. AF and other cardiovascular outcomes through 2005 were determined following standardized protocols. RESULTS: During a median follow-up of 16.8 years, 1209 cases of AF were identified. In multivariable Cox models, the hazard ratios (HR) and 95% confidence intervals (CI) of incident AF associated with a 1-standard deviation (SD) increase in each marker were 1.13 (1.07–1.20) for fibrinogen, 1.17 (1.11–1.23) for vWf, 1.17 (1.11–1.24) for factor VIIIc, 0.93 (0.88–1.00) for factor VIIc, 0.98 (0.92–1.04) for protein C, 1.00 (0.94–1.06) for aPTT and 1.00 (0.95–1.06) for ATIII. Greater factor VIIIc, fibrinogen and vWf were consistently associated with a higher risk of cardiovascular outcomes and mortality in those with and without incident AF, while greater protein C was associated with a lower risk of ischemic stroke. CONCLUSION: Several hemostatic markers are associated with the incidence of AF independently of other cardiovascular risk factors. Their role in the risk stratification of AF patients should be further studied

    Quinolone-3-diarylethers: A new class of antimalarial drug

    No full text
    The goal for developing new antimalarial drugs is to find a molecule that can target multiple stages of the parasite's life cycle, thus impacting prevention, treatment, and transmission of the disease. The 4(1H)-quinolone-3-diarylethers are selective potent inhibitors of the parasite's mitochondrial cytochrome bc1 complex. These compounds are highly active against the human malaria parasites Plasmodium falciparum and Plasmodium vivax. They target both the liver and blood stages of the parasite as well as the forms that are crucial for disease transmission, that is, the gametocytes, the zygote, the ookinete, and the oocyst. Selected as a preclinical candidate, ELQ-300 has good oral bioavailability at efficacious doses in mice, is metabolically stable, and is highly active in blocking transmission in rodent models of malaria. Given its predicted low dose in patients and its predicted long half-life, ELQ-300 has potential as a new drug for the treatment, prevention, and, ultimately, eradication of human malaria

    Cells of the human intestinal tract mapped across space and time

    Get PDF
    The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung’s disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease
    corecore