129 research outputs found

    Invasive Species in Puerto Rico: The View From El Yunque

    Get PDF
    Native flora and fauna of Puerto Rico have a long biogeographic connection to South America. Theory and empirical evidence suggest that islands, particularly those distantly isolated from the mainland, should be more susceptible to naturalizations and invasions of non-native species than continental areas. Anthropogenic disturbances can facilitate accidental and deliberate introductions of non-native species. In this study, we asked: What is the current status of introduced species within El Yunque National Forest (EYNF), the largest and most well-conserved forest area of Puerto Rico? To address this question, we reviewed the literature and surveyed local experts to identify introduced plant and animal taxa that are behaving as invaders within EYNF. We hypothesized that well-conserved forest areas within EYNF would be more resistant to invasions than disturbed areas along roads and ruderal areas with a long history of human activity. We found that there is only partial evidence that supports our hypothesis and this evidence is strongest in vascular plants, but not for the other taxonomic groups analyzed. Our combined results showed that currently the more ubiquitous invasive species in EYNF include some mammals (feral cat, rat, and mongoose) and some invertebrates (earthworms, mosquito, and Africanized honeybee). For many taxa, there is little information to thoroughly test our hypothesis, and thus more detailed surveys of the status of non-native and invasive species in EYNF are needed

    Aboveground carbon responses to experimental and natural hurricane impacts in a subtropical wet forest in Puerto Rico

    Get PDF
    Climate change and disturbance make it difficult to project long-term patterns of carbon sequestration in tropical forests, but large ecosystem experiments in these forests can inform predictions. The Canopy Trimming Experiment (CTE) manipulates two key components of hurricane disturbance, canopy openness and detritus deposition, in a tropical forest in Puerto Rico. We documented how the CTE and a real hurricane affected tree recruitment, biomass, and aboveground carbon storage over 15 years. In the CTE treatments, we trimmed branches, but we did not fell trees. We expected that during the 14-year period after initial canopy trimming, regrowth of branches and stems and stem recruitment stimulated by increased light and trimmed debris would help restore biomass and carbon loss due to trimming. Compared to control plots, in the trimmed plots recruitment of palms and dicot trees increased markedly after trimming, and stem diameters of standing trees increased. Data showed that recruitment of small trees adds little to aboveground carbon, compared to the amount in large trees. Nevertheless, this response restored pretreatment biomass and carbon in the experimental period. In particular, the experimental additions of trimmed debris on the forest floor seemed to stimulate increase in aboveground carbon. Toward the end of the experimental period, Hurricane Maria (Category 4 hurricane) trimmed and felled some trees but reduced aboveground carbon less in the plots (including untrimmed plots) than experimental trimming had. Thus, it appears that the amount of regrowth recorded after experimental trimming could also restore aboveground carbon in the forest after a severe hurricane in the same time span. However, Hurricane Maria, unlike the trimming treatments, felled large trees, and it may be that with predicted, more frequent severe hurricanes, that the continued loss of large trees would over the long term decrease aboveground carbon stored in this Puerto Rican forest and likewise in other tropical forests affected by cyclonic storms

    Solar radiation and soil moisture drive tropical forest understory responses to experimental and natural hurricanes

    Get PDF
    Tropical forest understory regeneration occurs rapidly after disturbance with compositional trajectories that depend on species availability and environmental conditions. To predict future tropical forest regeneration dynamics, we need a deeper understanding of how pulse disturbance events, like hurricanes, interact with environmental variability to affect understory demography and composition. We examined fern and sapling mortality, recruitment, and community composition in relation to solar radiation and soil moisture using 17 years of forest dynamics data (2003–2019) from the Canopy Trimming Experiment in the Luquillo Experimental Forest, Puerto Rico. Solar radiation increased 150% and soil moisture increased 40% following canopy trimming of experimental plots relative to control plots. All plots were disturbed in 2017 by Hurricanes Irma and Maria, so experimentally trimmed plots presented the opportunity to study the effects of multiple hurricanes, while control plots isolated the effects of a single natural hurricane. Recruitment rates maximized at 0.14 individuals/plot/month for ferns and 0.20 stems/plot/month for saplings. Recruitment and mortality were distributed more evenly over the 17 years of monitoring in experimentally trimmed plots than in control plots; however, following Hurricane Maria demographic rates substantially increased in control plots only. In experimentally trimmed plots, the largest community compositional shifts occurred as a result of the trimming events, and compositional changes were greatest for control plots after Hurricane Maria in 2017. Pioneer tree and fern species increased in abundance in response to both simulated and natural hurricanes. Following Hurricane Maria, two dominant pioneer species, Cyathea arborea and Cecropia schreberiana, recruited abundantly, but only in control plots. In trimmed plots, increased solar radiation and soil moisture shifted understory species composition steadily toward pioneer and secondary-successional species, with soil moisture interacting strongly with canopy trimming. Thus, both solar radiation and soil moisture are environmental drivers affecting pioneer species recruitment following disturbance, which interact with canopy opening following hurricanes. Our results suggest that if hurricane disturbances increase in frequency and severity, as suggested by climate change predictions, the understory regeneration of late-successional species, such as Manilkara bidentata and Sloanea berteroana, which prefer deeper shade and slightly drier soil microsites, may become imperiled

    Multimessenger parameter inference of gravitational-wave and electromagnetic observations of white dwarf binaries

    Get PDF
    The upcoming Laser Interferometer Space Antenna (LISA) will detect a large gravitational-wave foreground of Galactic white dwarf binaries. These sources are exceptional for their probable detection at electromagnetic wavelengths, some long before LISA flies. Studies in both gravitational and electromagnetic waves will yield strong constraints on system parameters not achievable through measurements of one messenger alone. In this work, we present a Bayesian inference pipeline and simulation suite in which we study potential constraints on binaries in a variety of configurations. We show how using LISA detections and parameter estimation can significantly improve constraints on system parameters when used as a prior for the electromagnetic analyses. We also provide rules of thumb for how current measurements will benefit from LISA measurements in the future.Comment: 8 pages, 5 figures, accepted to MNRA

    Mitigation of the instrumental noise transient in gravitational-wave data surrounding GW170817

    Get PDF
    In the coming years gravitational-wave detectors will undergo a series of improvements, with an increase in their detection rate by about an order of magnitude. Routine detections of gravitational-wave signals promote novel astrophysical and fundamental theory studies, while simultaneously leading to an increase in the number of detections temporally overlapping with instrumentally- or environmentally-induced transients in the detectors (glitches), often of unknown origin. Indeed, this was the case for the very first detection by the LIGO and Virgo detectors of a gravitational-wave signal consistent with a binary neutron star coalescence, GW170817. A loud glitch in the LIGO-Livingston detector, about one second before the merger, hampered coincident detection (which was initially achieved solely with LIGO-Hanford data). Moreover, accurate source characterization depends on specific assumptions about the behavior of the detector noise that are rendered invalid by the presence of glitches. In this paper, we present the various techniques employed for the initial mitigation of the glitch to perform source characterization of GW170817 and study advantages and disadvantages of each mitigation method. We show that, despite the presence of instrumental noise transients louder than the one affecting GW170817, we are still able to produce unbiased measurements of the intrinsic parameters from simulated injections with properties similar to GW170817.Comment: 11 pages, 3 figures, accepted in PR

    Astrobites as a Community-led Model for Education, Science Communication, and Accessibility in Astrophysics

    Get PDF
    Support for early career astronomers who are just beginning to explore astronomy research is imperative to increase retention of diverse practitioners in the field. Since 2010, Astrobites has played an instrumental role in engaging members of the community -- particularly undergraduate and graduate students -- in research. In this white paper, the Astrobites collaboration outlines our multi-faceted online education platform that both eases the transition into astronomy research and promotes inclusive professional development opportunities. We additionally offer recommendations for how the astronomy community can reduce barriers to entry to astronomy research in the coming decade

    The SXS Collaboration catalog of binary black hole simulations

    Get PDF
    Accurate models of gravitational waves from merging black holes are necessary for detectors to observe as many events as possible while extracting the maximum science. Near the time of merger, the gravitational waves from merging black holes can be computed only using numerical relativity. In this paper, we present a major update of the Simulating eXtreme Spacetimes (SXS) Collaboration catalog of numerical simulations for merging black holes. The catalog contains 2018 distinct configurations (a factor of 11 increase compared to the 2013 SXS catalog), including 1426 spin-precessing configurations, with mass ratios between 1 and 10, and spin magnitudes up to 0.998. The median length of a waveform in the catalog is 39 cycles of the dominant =m=2\ell=m=2 gravitational-wave mode, with the shortest waveform containing 7.0 cycles and the longest 351.3 cycles. We discuss improvements such as correcting for moving centers of mass and extended coverage of the parameter space. We also present a thorough analysis of numerical errors, finding typical truncation errors corresponding to a waveform mismatch of 104\sim 10^{-4}. The simulations provide remnant masses and spins with uncertainties of 0.03% and 0.1% (90th90^{\text{th}} percentile), about an order of magnitude better than analytical models for remnant properties. The full catalog is publicly available at https://www.black-holes.org/waveforms .Comment: 33+18 pages, 13 figures, 4 tables, 2,018 binaries. Catalog metadata in ancillary JSON file. v2: Matches version accepted by CQG. Catalog available at https://www.black-holes.org/waveform

    Clinical and Epidemiologic Research Case-Control Pilot Study of Soft Contact Lens Wearers With Corneal Infiltrative Events and Healthy Controls

    Get PDF
    PURPOSE. The purpose of this study was to assess risk factors associated with soft contact lens (SCL)-related corneal infiltrative events (CIEs). METHODS. This was a single-visit, case-control study conducted at five academic centers in North America. Cases were defined as current SCL wearers with a symptomatic CIE. For each case, three age-and sex-matched controls were enrolled. Subjects completed the Contact Lens Risk Survey (CLRS), a standardized scripted medical interview, supplied a recent health history, and underwent an ocular examination. Microbial culturing of the ocular surface, SCL, and lens storage case was conducted for all cases and one of the three matched controls. Univariate and multivariate logistic regression modeling were used to assess the risk of developing a CIE. RESULTS. Thirty cases and 90 controls 13 to 31 years of age completed the study. Corneal infiltrative event diagnosis included contact lens-associated red eye, infiltrative keratitis, and contact lens peripheral ulcer. Subjects with symptomatic CIEs were more likely to harbor substantial levels of gram-negative bioburden on the ocular surface and contact lens. Significant risk factors for developing a CIE were overnight wear of SCLs, use of multipurpose solution, rinsing SCLs with water, lens storage case older than 6 months, previous ''red eye'' event, use of ocular drops in the past week, and illness during the past week. CONCLUSIONS. This pilot study demonstrated feasibility of enrolling a representative pool of SCL wearers with an untreated, symptomatic CIE and assessing CIE risk factors by using standardized methods. A larger sample size is needed to determine relationships between patient-reported behaviors and exposures, microbial bioburden, and CIE development. Keywords: adverse events, contact lenses, corneal infiltrative events, microbial culturing A recent report from the US Centers for Disease Control and Prevention (CDC) called to light the substantial burden associated with contact lens-related complications. 1 The CDC report estimated that contact lens-related keratitis results in nearly 1 million doctor visits each year and carries an associated cost of $175 million. 1 This estimate does not include the additional ''costs'' to the patient such as pain or discomfort, missed school or work, and potential for permanent loss of vision. Approximately 37 million people in the United States currently wear contact lenses and, due to the increasing prevalence of myopia, more and younger patients are expected to begin wearing contact lenses to aid in its management

    The LIGO HET Response (LIGHETR) Project to Discover and Spectroscopically Follow Optical Transients Associated with Neutron Star Mergers

    Full text link
    The LIGO HET Response (LIGHETR) project is an enterprise to follow up optical transients (OT) discovered as gravitational wave merger sources by the LIGO/Virgo collaboration (LVC). Early spectroscopy has the potential to constrain crucial parameters such as the aspect angle. The LIGHETR collaboration also includes the capacity to model the spectroscopic evolution of mergers to facilitate a real-time direct comparison of models with our data. The principal facility is the Hobby-Eberly Telescope. LIGHETR uses the massively-replicated VIRUS array of spectrographs to search for associated OTs and obtain early blue spectra and in a complementary role, the low-resolution LRS-2 spectrograph is used to obtain spectra of viable candidates as well as a densely-sampled series of spectra of true counterparts. Once an OT is identified, the anticipated cadence of spectra would match or considerably exceed anything achieved for GW170817 = AT2017gfo for which there were no spectra in the first 12 hours and thereafter only roughly once daily. We describe special HET-specific software written to facilitate the program and attempts to determine the flux limits to undetected sources. We also describe our campaign to follow up OT candidates during the third observational campaign of the LIGO and Virgo Scientific Collaborations. We obtained VIRUS spectroscopy of candidate galaxy hosts for 5 LVC gravitational wave events and LRS-2 spectra of one candidate for the OT associated with S190901ap. We identified that candidate, ZTF19abvionh = AT2019pip, as a possible Wolf-Rayet star in an otherwise unrecognized nearby dwarf galaxy.Comment: 26 pages, 15 figure
    corecore