11 research outputs found

    <sup>18</sup>F-FDG PET/CT Optimizes Treatment in <i>Staphylococcus Aureus</i> Bacteremia and Is Associated with Reduced Mortality.

    Get PDF
    Metastatic infection is an important complication of Staphylococcus aureus bacteremia (SAB). Early diagnosis of metastatic infection is crucial, because specific treatment is required. However, metastatic infection can be asymptomatic and difficult to detect. In this study, we investigated the role of 18 F-FDG PET/CT in patients with SAB for detection of metastatic infection and its consequences for treatment and outcome. Methods: All patients with SAB at Radboud University Medical Center were included between January 2013 and April 2016. Clinical data and results of 18 F-FDG PET/CT and other imaging techniques, including echocardiography, were collected. Primary outcomes were newly diagnosed metastatic infection by 18 F-FDG PET/CT, subsequent treatment modifications, and patient outcome. Results: A total of 184 patients were included, and 18 F-FDG PET/CT was performed in 105 patients, of whom 99 had a high-risk bacteremia. 18 F-FDG PET/CT detected metastatic infectious foci in 73.7% of these high-risk patients. In 71.2% of patients with metastatic infection, no signs and symptoms suggesting metastatic complications were present before 18 F-FDG PET/CT was performed. 18 F-FDG PET/CT led to a total of 104 treatment modifications in 74 patients. Three-month mortality was higher in high-risk bacteremia patients without 18 F-FDG PET/CT performed than in those in whom 18 F-FDG PET/CT was performed (32.7% vs. 12.4%, P = 0.003). In multivariate analysis, 18 F-FDG PET/CT was the only factor independently associated with reduced mortality ( P = 0.005; odds ratio, 0.204; 95% confidence interval, 0.066-0.624). A higher comorbidity score was independently associated with increased mortality ( P = 0.003; odds ratio, 1.254; 95% confidence interval, 1.078-1.457). Conclusion: 18 F-FDG PET/CT is a valuable technique for early detection of metastatic infectious foci, often leading to treatment modification. Performing 18 F-FDG PET/CT is associated with significantly reduced 3-mo mortality

    A comparison of the diagnostic value of MRI and <sup>18</sup>F-FDG-PET/CT in suspected spondylodiscitis.

    Get PDF
    Purpose The purpose of this study was to evaluate the diagnostic value of 18F-fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT scan) and magnetic resonance imaging (MRI) in diagnosing spondylodiscitis and its complications, such as epidural and paraspinal abscesses.Methods From January 2006 to August 2013 patients with a clinical suspicion of spondylodiscitis, with an infection, or with fever of unknown origin were retrospectively included if 18F-FDG-PET/CT and MRI of the spine were performed within a 2-week time span. Imaging results were compared to the final clinical diagnosis and follow-up data were collected.Results Sixty-eight patients were included of whom 49 patients were diagnosed with spondylodiscitis. MRI showed an overall sensitivity of 67 % and specificity of 84 %. Diagnostic accuracy was 58 %, when MRI was performed within 2 weeks after the start of symptoms and improved to 82 %, when performed more than 2 weeks after onset of symptoms. 18F-FDG-PET/CT showed a sensitivity of 96 % and a specificity of 95 %, with no relation to the interval between the scan and the start of symptoms.Conclusions As compared to MRI, 18F-FDG-PET/CT has superior diagnostic value for detecting early spondylodiscitis. After 2 weeks both techniques perform similarly

    Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients.

    Get PDF
    Purpose To determine the effectiveness of adjuvant dendritic cell (DC) vaccination to induce tumor-specific immunological responses in stage III melanoma patients.Experimental design Retrospective analysis of stage III melanoma patients, vaccinated with autologous monocyte-derived DC loaded with tumor-associated antigens (TAA) gp100 and tyrosinase after radical lymph node dissection. Skin-test infiltrating lymphocytes (SKILs) obtained from delayed-type hypersensitivity skin-test biopsies were analyzed for the presence of TAA-specific CD8(+) T cells by tetrameric MHC-peptide complexes and by functional TAA-specific T cell assays, defined by peptide-recognition (T2 cells) and/or tumor-recognition (BLM and/or MEL624) with specific production of Th1 cytokines and no Th2 cytokines.Results Ninety-seven patients were analyzed: 21 with stage IIIA, 34 with stage IIIB, and 42 had stage IIIC disease. Tetramer-positive CD8(+) T cells were present in 68 patients (70%), and 24 of them showed a response against all 3 epitopes tested (gp100:154-162, gp100:280-288, and tyrosinase:369-377) at any point during vaccinations. A functional T cell response was found in 62 patients (64%). Rates of peptide-recognition of gp100:154-162, gp100:280-288, and tyrosinase:369-377 were 40%, 29%, and 45%, respectively. Median recurrence-free survival and distant metastasis-free survival of the whole study population were 23.0 mo and 36.8 mo, respectively.Conclusions DC vaccination induces a functional TAA-specific T cell response in the majority of stage III melanoma patients, indicating it is more effective in stage III than in stage IV melanoma patients. Furthermore, performing multiple cycles of vaccinations enhances the chance of a broader immune response

    Dendritic cells in cancer immunology and immunotherapy

    Get PDF
    Dendritic cells (DCs) are a diverse group of specialized antigen-presenting cells with key roles in the initiation and regulation of innate and adaptive immune responses. As such, there is currently much interest in modulating DC function to improve cancer immunotherapy. Many strategies have been developed to target DCs in cancer, such as the administration of antigens with immunomodulators that mobilize and activate endogenous DCs, as well as the generation of DC-based vaccines. A better understanding of the diversity and functions of DC subsets and of how these are shaped by the tumour microenvironment could lead to improved therapies for cancer. Here we will outline how different DC subsets influence immunity and tolerance in cancer settings and discuss the implications for both established cancer treatments and novel immunotherapy strategies.S.K.W. is supported by a European Molecular Biology Organization Long- Term Fellowship (grant ALTF 438– 2016) and a CNIC–International Postdoctoral Program Fellowship (grant 17230–2016). F.J.C. is the recipient of a PhD ‘La Caixa’ fellowship. Work in the D.S. laboratory is funded by the CNIC, by the European Research Council (ERC Consolidator Grant 2016 725091), by the European Commission (635122-PROCROP H2020), by the Ministerio de Ciencia, Innovación e Universidades (MCNU), Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional (FEDER) (SAF2016-79040-R), by the Comunidad de Madrid (B2017/BMD-3733 Immunothercan- CM), by FIS- Instituto de Salud Carlos III, MCNU and FEDER (RD16/0015/0018-REEM), by Acteria Foundation, by Atresmedia (Constantes y Vitales prize) and by Fundació La Marató de TV3 (201723). The CNIC is supported by the Instituto de Salud Carlos III, the MCNU and the Pro CNIC Foundation, and is a Severo Ochoa Centre of Excellence (SEV-2015-0505).S

    EANM recommendations based on systematic analysis of small animal radionuclide imaging in inflammatory musculoskeletal diseases.

    Get PDF
    Inflammatory musculoskeletal diseases represent a group of chronic and disabling conditions that evolve from a complex interplay between genetic and environmental factors that cause perturbations in innate and adaptive immune responses. Understanding the pathogenesis of inflammatory musculoskeletal diseases is, to a large extent, derived from preclinical and basic research experiments. In vivo molecular imaging enables us to study molecular targets and to measure biochemical processes non-invasively and longitudinally, providing information on disease processes and potential therapeutic strategies, e.g. efficacy of novel therapeutic interventions, which is of complementary value next to ex vivo (post mortem) histopathological analysis and molecular assays. Remarkably, the large body of preclinical imaging studies in inflammatory musculoskeletal disease is in contrast with the limited reports on molecular imaging in clinical practice and clinical guidelines. Therefore, in this EANM-endorsed position paper, we performed a systematic review of the preclinical studies in inflammatory musculoskeletal diseases that involve radionuclide imaging, with a detailed description of the animal models used. From these reflections, we provide recommendations on what future studies in this field should encompass to facilitate a greater impact of radionuclide imaging techniques on the translation to clinical settings

    Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells

    No full text
    \u3cp\u3ePURPOSE: Thus far, dendritic cell (DC)-based immunotherapy of cancer was primarily based on in vitro-generated monocyte-derived DCs, which require extensive in vitro manipulation. Here, we report on a clinical study exploiting primary CD1c(+) myeloid DCs, naturally circulating in the blood.\u3c/p\u3e\u3cp\u3eEXPERIMENTAL DESIGN: Fourteen stage IV melanoma patients, without previous systemic treatment for metastatic disease, received autologous CD1c(+) myeloid DCs, activated by only brief (16 hours) ex vivo culture and loaded with tumor-associated antigens of tyrosinase and gp100.\u3c/p\u3e\u3cp\u3eRESULTS: Our results show that therapeutic vaccination against melanoma with small amounts (3-10 × 10(6)) of myeloid DCs is feasible and without substantial toxicity. Four of 14 patients showed long-term progression-free survival (12-35 months), which directly correlated with the development of multifunctional CD8(+) T-cell responses in three of these patients. In particular, high CD107a expression, indicative for cytolytic activity, and IFNγ as well as TNFα and CCL4 production was observed. Apparently, these T-cell responses are essential to induce tumor regression and promote long-term survival by stalling tumor growth.\u3c/p\u3e\u3cp\u3eCONCLUSIONS: We show that vaccination of metastatic melanoma patients with primary myeloid DCs is feasible and safe and results in induction of effective antitumor immune responses that coincide with improved progression-free survival. Clin Cancer Res; 22(9); 2155-66. ©2015 AACR.\u3c/p\u3
    corecore