4 research outputs found

    The dynamic changes of dominant clones of Staphylococcus aureus causing bloodstream infections in the European region: results of a second structured survey.

    Get PDF
    Staphylococcus aureus is one of the most important human pathogens and meticillin-resistant S. aureus (MRSA) presents a major cause of healthcare- and community-acquired infections. This study investigated the spatial and temporal changes of S. aureus causing bacteraemia in Europe over a five-year interval and explored the possibility of integrating pathogen-based typing data with epidemiological and clinical information at a European level. Between January 2011 and July 2011, 350 laboratories serving 453 hospitals in 25 countries collected 3,753 isolates (meticillin-sensitive S. aureus (MSSA) and MRSA) from patients with S. aureus bloodstream infections. All isolates were sent to the national staphylococcal reference laboratories and characterised by quality-controlled spa typing. Data were uploaded to an interactive web-based mapping tool. A wide geographical distribution of spa types was found, with some prevalent in all European countries. MSSA was more diverse than MRSA. MRSA differed considerably between countries with major international clones expanding or receding when compared to a 2006 survey. We provide evidence that a network approach of decentralised typing and visualisation of aggregated data using an interactive mapping tool can provide important information on the dynamics of S. aureus populations such as early signalling of emerging strains, cross-border spread and importation by travel

    A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant staphylococcus aureus pandemic

    Get PDF
    The widespread use of antibiotics in association with high-density clinical care has driven the emergence of drug-resistant bacteria that are adapted to thrive in hospitalized patients. Of particular concern are globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clones that cause outbreaks and epidemics associated with health care. The most rapidly spreading and tenacious health-care-associated clone in Europe currently is EMRSA-15, which was first detected in the UK in the early 1990s and subsequently spread throughout Europe and beyond. Using phylogenomic methods to analyze the genome sequences for 193 S. aureus isolates, we were able to show that the current pandemic population of EMRSA-15 descends from a health-care-associated MRSA epidemic that spread throughout England in the 1980s, which had itself previously emerged from a primarily community-associated methicillin-sensitive population. The emergence of fluoroquinolone resistance in this EMRSA-15 subclone in the English Midlands during the mid-1980s appears to have played a key role in triggering pandemic spread, and occurred shortly after the first clinical trials of this drug. Genome-based coalescence analysis estimated that the population of this subclone over the last 20 yr has grown four times faster than its progenitor. Using comparative genomic analysis we identified the molecular genetic basis of 99.8% of the antimicrobial resistance phenotypes of the isolates, highlighting the potential of pathogen genome sequencing as a diagnostic tool. We document the genetic changes associated with adaptation to the hospital environment and with increasing drug resistance over time, and how MRSA evolution likely has been influenced by country-specific drug use regimens

    Genomic epidemiology of SARS-CoV-2 in a university outbreak setting and implications for public health planning

    Get PDF
    Whole genome sequencing of SARS-CoV-2 has occurred at an unprecedented scale, and can be exploited for characterising outbreak risks at the fine-scale needed to inform control strategies. One setting at continued risk of COVID-19 outbreaks are higher education institutions, associated with student movements at the start of term, close living conditions within residential halls, and high social contact rates. Here we analysed SARS-CoV-2 whole genome sequences in combination with epidemiological data to investigate a large cluster of student cases associated with University of Glasgow accommodation in autumn 2020, Scotland. We identified 519 student cases of SARS-CoV-2 infection associated with this large cluster through contact tracing data, with 30% sequencing coverage for further analysis. We estimated at least 11 independent introductions of SARS-CoV-2 into the student population, with four comprising the majority of detected cases and consistent with separate outbreaks. These four outbreaks were curtailed within a week following implementation of control measures. The impact of student infections on the local community was short-term despite an underlying increase in community infections. Our study highlights the need for context-specific information in the formation of public health policy for higher educational settings
    corecore