70 research outputs found

    The surprising implications of familial association in disease risk

    Full text link
    Background: A wide range of diseases show some degree of clustering in families; family history is therefore an important aspect for clinicians when making risk predictions. Familial aggregation is often quantified in terms of a familial relative risk (FRR), and although at first glance this measure may seem simple and intuitive as an average risk prediction, its implications are not straightforward. Methods: We use two statistical models for the distribution of disease risk in a population: a dichotomous risk model that gives an intuitive understanding of the implication of a given FRR, and a continuous risk model that facilitates a more detailed computation of the inequalities in disease risk. Published estimates of FRRs are used to produce Lorenz curves and Gini indices that quantifies the inequalities in risk for a range of diseases. Results: We demonstrate that even a moderate familial association in disease risk implies a very large difference in risk between individuals in the population. We give examples of diseases for which this is likely to be true, and we further demonstrate the relationship between the point estimates of FRRs and the distribution of risk in the population. Conclusions: The variation in risk for several severe diseases may be larger than the variation in income in many countries. The implications of familial risk estimates should be recognized by epidemiologists and clinicians.Comment: 17 pages, 5 figure

    Does Cox analysis of a randomized survival study yield a causal treatment effect?

    Get PDF
    The final publication (Aalen, Odd O., Richard J. Cook, and Kjetil Røysland. Does Cox analysis of a randomized survival study yield a causal treatment effect?. Lifetime Data Analysis 21(4) (2015): 579-593. DOI: 10.1007/s10985-015-9335-y) is available at http://link.springer.com/article/10.1007/s10985-015-9335-yStatistical methods for survival analysis play a central role in the assessment of treatment effects in randomized clinical trials in cardiovascular disease, cancer, and many other fields. The most common approach to analysis involves fitting a Cox regression model including a treatment indicator, and basing inference on the large sample properties of the regression coefficient estimator. Despite the fact that treatment assignment is randomized, the hazard ratio is not a quantity which admits a causal interpretation in the case of unmodelled heterogeneity. This problem arises because the risk sets beyond the first event time are comprised of the subset of individuals who have not previously failed. The balance in the distribution of potential confounders between treatment arms is lost by this implicit conditioning, whether or not censoring is present. Thus while the Cox model may be used as a basis for valid tests of the null hypotheses of no treatment effect if robust variance estimates are used, modeling frameworks more compatible with causal reasoning may be preferable in general for estimation.Canadian Institutes for Health Research (FRN 13887); Canada Research Chair (Tier 1) – CIHR funded (950-226626

    Breast cancer tumor growth estimated through mammography screening data

    Get PDF
    Introduction Knowledge of tumor growth is important in the planning and evaluation of screening programs, clinical trials, and epidemiological studies. Studies of tumor growth rates in humans are usually based on small and selected samples. In the present study based on the Norwegian Breast Cancer Screening Program, tumor growth was estimated from a large population using a new estimating procedure/model. Methods A likelihood-based estimating procedure was used, where both tumor growth and the screen test sensitivity were modeled as continuously increasing functions of tumor size. The method was applied to cancer incidence and tumor measurement data from 395,188 women aged 50 to 69 years. Results Tumor growth varied considerably between subjects, with 5% of tumors taking less than 1.2 months to grow from 10 mm to 20 mm in diameter, and another 5% taking more than 6.3 years. The mean time a tumor needed to grow from 10 mm to 20 mm in diameter was estimated as 1.7 years, increasing with age. The screen test sensitivity was estimated to increase sharply with tumor size, rising from 26% at 5 mm to 91% at 10 mm. Compared with previously used Markov models for tumor progression, the applied model gave considerably higher model fit (85% increased predictive power) and provided estimates directly linked to tumor size. Conclusion Screening data with tumor measurements can provide population-based estimates of tumor growth and screen test sensitivity directly linked to tumor size. There is a large variation in breast cancer tumor growth, with faster growth among younger women

    A multi-state model to estimate incidence of heroin use

    Get PDF
    Background: Existing incidence estimates of heroin use are usually based on one information source. This study aims to incorporate more sources to estimate heroin use incidence trends in Spain between 1971 and 2005. Methods: A multi-state model was constructed, whereby the initial state "heroin consumer" is followed by transition to either "admitted to first treatment" or to "left heroin use" (i.e. permanent cessation or death). Heroin use incidence and probabilities of entering first treatment ever were estimated following a back-calculation approach. Results: The highest heroin use incidence rates in Spain, around 1.5 per 1,000 inhabitants aged 10-44, occurred between 1985 and 1990; subdividing by route of administration reveals higher incidences of injection between 1980 and 1985 (a mean of 0.62 per 1.000) and a peak for non-injectors in 1990 (0.867 per 1,000). Conclusions: A simple conceptual model for heroin users' trajectories related to treatment admission, provided a broader view of the historical trend of heroin use incidence in Spain

    PRACTICAL APPLICATIONS OF THE NONPARAMETRIC STATISTICAL THEORY FOR COUNTING PROCESSES

    Get PDF

    Correction

    No full text
    corecore