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1. INTRODUCTION 

We will present some examples illustrating the use of 

nonparametric methods for counting processes. The 

discussion will be quite informal. The material is 

related to theoretic~l work by the author, in the sense 

that this work has contributed somewhat to extending and 

making a theoretical basis for the methods. As far as 

survival analysis is co~cerned the basic ideas h~ve been 

in the litterature f?r quite a few years. Important early 

references are Kaplan and Meier (1958), Mantel and Haenzel 

(1959), Gehan (1965) and Nelson (1969). Although a good 

deal of the present paper is also concerned with survival 

analysis, we give in addition some examples of a different 

nature and show that similar methods may be applied to them. 

Applications of the theory of counting processes which are 

very different from those given here may be found in Becker (1977, 

1979, 1981). Those papers are concerned with estimation 

of infectiousness of epidemic diseases. 

Our use of the term counting process refers to a general 

point of view which serves to unify several different 

models. This point of view may be described in the following 

way: 

One observes the occurrence over time of several events, 

which may be of different types. We assume that the types 

are numbered from 1 up to k. 
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Consider a given time t and let N. (t) be the number of 
l 

events of type i which has occurred up to (and including) 

time t. Obviously the stochastic process N. (t) will have 
l 

a jump of size 1 each time an event of type i occurs. 

Ni(t) can be said to count the events of type i, and hence 

we call it a counting process. Such a process is illu-

strated in Figure 1. 

Number of / 
jumps 

4 

3 

2 

1 

T. 1 l, T. 2 l, T. 3 l, T. 4 l, 

N. (t) 
l 

Figure 1. A counting process. 

For each counting process it is useful to consider the 

concept of an intensity process, denoted Ai(t). It is de-

fined in the following way: A. (t)dt is the conditional 
l 

probability of an event of type i happening in the time 

interval (t, t + dt) given all that has happened before 

time t. 

t 
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In all examples below the processes A. (t), i = 1, ... ,k, 
l 

can be written as follows: 

where ai(t) is an unknown function while Y. (t) is an ob-
·-' l 

served process which may depend arbitrarily on the past. 

This model is called the multiplicative intensity model. 

One is interested in making non-parametric statistical 

inference about the a-functions. It is shown in Aalen 

(1978: b) that the socalled martingale approach makes it 

possible to develop such a theory without imposing almost 

any structure on the counting processes (which means that 

the form of the Y-processes, their interdependence and 

dependence on the past do not need to be specified) . 

We will briefly go through the examples treated below and 

indicate what is the interpretation of the a's and the 

Y's in each example. 

(i) Competing risks 

We will use the terminology of survival studies. The process 

N. (t) counts the occurrence of deaths due to cause no. i. 
l 

The process Yi(t) represents the number of individuals at 

risk at time t (and hence is the same for each i). The 

function a. (t) is the same as the hazard (or mortality) rate 
l 

at time t. It should be intuitively reasonable that the 

intensity of a death due to cause no. i is equal to ai (t) Yi (t). 
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(ii) Birth and death process 

There are two counting processes, N1 (t) and N2 (t), which 

count the births and deaths respectively. Y1 (t) and Y2 (t) 

are both equal to the number of individuals alive at time t. 

The functions 

correspond to the birth and death rates respectively. 

(iii) Epidemic example 

Let N(t) count the number of infections in a population and 

let I(t) and S(t) be the number of infectives and suscep-

tibles, respectively, at time t. Then a simple model says 

that the intensity of another individual being infected is 

given by 

edt) I (t) S (t) 

where the function a(t) is a measure of infectiousness. 

We once more have the multiplicative intensity model with 

Y(f) = I(t) S(t). 

(iv) Mating of Drosophila 

Let M(t) and F(t) represent the numbers of male and female 

Drosophila in a chamber that have not started mating at 

time t. A simple model assumes that the intensity of 
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another mating starting is of the form 

a(t) H(t) F(t). 

Practical examples where the counting process framework has 

been used may also be'found in other papers. For instance, 

Andersen et al. (1981) give an example concerning admission to 

psychiatric hospitals among women giving birth. In that case 

the counting processes register admissions to, and discharges 

from psychiatric hos,pitals among women in various parity groups. 

Statistical tests based on counting process theory is used for 

comparing the intensities of admission among women in the 

different groups. 
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2. COMPETING RISKS 

2A. General remarks 

The notion of competing risks, or multiple decrement models, 

is fundamental in th~- statistical analysis of survival data. 

In actuarial science, demography and epidemiology there is 

an age old tradition for the study of competing risks models. 

Hence, one should think that this field would be more or less 

completely developed{ and that not mueh new could be said 

on the subject. This, however, is not true. The clinical 

trials and animal experiments which have become very common 

during the last 20 or 30 years, have posed new problems which 

require new methods. One feature, for instance, of a clinical 

trial which makes it different from, say, an actuarial mortali­

ty study, is the much smaller number of individuals which are 

involved in the former one. A clinical trial may involve may­

be a hundred people (which means a large trial) while an ac­

tuarial study may involve tens of thousands of people (and 

perhaps much more). 

It has turned out that the small scale survival studies may 

sometimes be usefully analysed by means of nonparametric 

methods, which may be entirely irrelevant for the large scale 

studies. ("Nonparametric" means that no assumption at all is 

made about the functional form of the mortality rates). The 

prototype of these nonparametric procedures is the. Kaplan-

Meier survival curve. 
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Even though these procedures may occasionally look like 

rather simple modifications of traditional methods, their 

nonpararnetric character still requires a new theoretical 

underpinning. The mathematical apparatus needed to do this 

is quite a bit more formidable than that required by tradi-

tional methods. This mathematics can not be dispensed with 

since it is essential for the construction of confidence 

intervals, computation of p-values and so on. Hence a blossom-

ing of new activity has-~aken place as regards the statisti-

cal analysis of competing risks model. This may be witnessed 
. •, 

by the. overflow of such papers in various journals. 

Below we will illustrate the use of some nonparametric methods, 

in particular the Nelson plot and a generalized Kaplan-Meier 

estimate. We will consider two sets of data, one from an 

animal survival experiment and the other from a study of 

the intrauterine contraceptive device (IUD). The second example 

illustrates the use of competing risks methods to other data 

than those arising in survival studies. 
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2B. The Nelson plot with application to animal survival data. 

Two sample testing. Test for increasing intensity. 

The well known Kaplan-Meier survival curve is very useful in 

situations where one wants to estimate the total mortality in 

the presence of censoring. In a competing risks setting, 

however, one often wishes to estimate the separate effects 

of several causes of death. The Kaplan-Meier plot is sometimes 

used for this purpose, too. For instance, Heel and Walburg 

(1972) studies the mortality of irradiated mice due to three 
... 

different causes of death (or risks). For each cause of 

death they compute a Kaplan-Meier survival curve, regarding 

death from the other causes as censoring. Each Kaplan-Meier 

curve is then supposed to estimate the hypothetical mortality 

from the given cause of death in the case that none of the 

other risks were operating. This is only true and meaningful 

if one makes the assumption of independent risks. Heel and 

Walburg argue that this will probably hold in their case. 

We will argue that another plot, closely related to the Kaplan-

Meier plot, has a more general validity in a competing general 

setting. This is the socalled Nelson plot, which estimates 

the cumulative intensity. This latter concept is defined in 

the following way. Let A. (t) be the death intensity (hazard 
l 

rate, mortality rate) due to cause no. i, and assume there are 

k causes in all. The cumulative intensity is defined by the formula 

t 
Si(t) = JAi(s)ds 

0 
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Nelson (1969) suggested to estimate S. (t) in the following 
1 

way. Let Y(t) be the number of individuals at risk just 

before time t. 

possibility of censoring which means that Y(t) 

may decrease without .,a death taking place. Let Ti 1 < Ti2 < 

be the observed times of death from cause no. i. Nelson's 

estimate is given by 

( 2. 1 ) S.(t) = 
1 

Intuitive justification for this estimate may be found in 

Nelson (1969) or Altshuler (1970), while a mathematical 

justification and theory, partly based on counting processes, 

may be found in Aalen (1976, 1978b). 

may be estimated by 

T. (t) = 
1 

' 1 L -----2:--
T .. <t [Y(T .. )] 
1]- 1] 

The variance of S. (t) 
1 

The estimated cumulative intensity is intended for plotting 

purposes. The result is called a Nelson plot. This was 

first developed by Nelson for applications in reliability 

life testing. It does not seem to have been used so much 

in a biostatistical context, and one object of this paper is 

to argue for its usefulness. 

It may be easily shown that the Nelson plot is very 

closely related to the Kaplan-Meier plot. 
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However, since the intensities A. (t), i = 1, ••. ,k, are 
1 

always well defined, also when the risks are dependent, the 

Nelson plot will always convey a clear information in a 

competing risks setting as opposed to the Kaplan-Meier plot. 

The plots of $i(t) giye information of the following kind: 

( i) The slopes of~. (t), i = 1, •.. ,k, are estimates of the 
1 

values of the intensiti~s, and hence give information about 

the influence of the various causes of death at any time t. 

(ii) The value of e. (t) at any timet is an estimate of the 
1 

expected number of deaths from cause no. i that would have 

taken place if there were constantly a single individual at 

risk (see Altshuler, 1970). Of course, this is not a common 

quantity to consider, but it may still convey some infor-

mation. 

(iii) The plots may be used to check various parametric 

models for the intensities. A constant intensity would yield 

approximately a straight-lined plot. If the intensity follows 

the Weibull law, then e. (t) will be a straight line if both 
1 

axes are put in a logarithmic scale. Nelson (1969, 1972) 

has developed several kinds of "probability paper" that can 

be used for checking the validity of various models. 

(iv) It follows from Aalen (1976, Thm. 3.2) that the 

ai(t), i = 1, ... ,k, can be considered approximately independent 

processes, implying that the Nelson plots for the various risks 



- 11 -

may be judged independently of each other. 

By the way, one should note that Day (1976) suggests that 

the cumulative intensity is a very natural measure for age 

standardized incidenqe. To be more precise, if one considers 

the time interval (t 1 ,t2 ) then Day suggests to use ai(t2 ) -

ai(t 1 ) as a measure of incidence due to cause no. i. This 
·'/ 

can, of course, be estimated by ei(t2 ) - ~i(t 1 ). Day ar-

gues that such a measure has great practical advantages. 

As a first illustration of the Nelson plot we will reanalyze 

the data of Hoel and Walburg (1972). The data, which are 

given in Table 1, come from observation of two groups of 

RFM strain male mice which have received a radiation dose 

of 300 r at an age of 5-6 weeks. Group I consisted of 95 mice 

living in a conventional laboratory environment, while group 

II consisted of 82 mice in a germfree environment. Three 

causes of death are considered for each group: thymic lymp-

homa (cause no. 1), reticulum cell sarcoma (cause no. 2) 

and all other causes combined (cause no. 3). 

The Nelson plots for the conventional mice and the germfree 

mice are given in Figures 2 an 3 respectively. The figures 

give a clear impression of the importance of the various 

causes of death at each age. Consider for instance Figure 2. 

From the age of about 180 days, thymic lymphoma and "other 

causes" start to "operate" among the conventional mice, the 

two causes of death being of equal importance. 
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Until the age of about 450 days, the intensities of thesQ 

two causes seem to be quite constant (the plots being more 

or less straight) . After this time thymic lymphoma ceases 

to be of importance, while the mortality due to "other causes" 

starts to increase (the slope of the plot becoming steeper) . 

Reticulum cell sarcoma is of very little importance as a 

cause of death until about 550 days when the mortality due 

to this cause starts to rise sharply. Soon it becomes the 

dominant cause of death. 

Figur~ 3 shows that the picture for germfree mice is quite 

different. In order to make a more detailed comparison, the 

Nelson plots of the germfree and conventional mice are corn-

pared pairwise for each cause of death in Figures 4,5 and 

6. Figure 4 indicates what the germfree environment has 

little effect as regards thymic lymphoma, at least up to 

the age of 450 days. In contrast, Figure 5 shows that the 

effect is very great for reticulum cell sarcoma, the death 

rate being greatly reduced in the germfree environment. A 

similar but much weaker effect can be seen for "other causes" 

from Figure 6. In this case it seems that the only difference 

between the two curves , is that one is "delayed" somewhat in 

comparison to the other. Hence, as ~r as "other causes" 

is concerned the effect of the germfree environment seems to 

be to prolong life a certain amount (about a 100 days). 

In Figure 7, finally, the obseved difference for reticulum 

cell sarcoma is analyzed more closely. 
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The figure presents a "probit plot", i.e the cumulative 

intensity values (taken from Figure 5) for the conventio-

nal mice are plotted against the corresponding values for 

the germfree mice. The values are, of course, taken 

from the age interval where they can be compared. Over this 

interval, the probit ,plot fits well with a straight line. 

This indicates a proportional relationship between the two 

mortalities. Hence, it seems that the presence of germs has 
_.,.-· 

the effect of roughly, multiplying the mortality due to 

reticulum cell sarco~a by a constant amount. 

The idea of the probit plot was suggested by Keiding and 

Weis Bentzon (1976). 

As mentioned earlier, one of the i~portant uses of the Nelson 

plot is for checking the validity of various parametric models. 

As a rough illustration of this, we have in Figure 8 taken 

some values from the Nelson plot for "other causes" and put 

them into a logarithmic coordinate system. "Time" in the 

logarithmic diagram starts at the moment the first death from 

"other causes" takes place. It is shown in Figure 8 that a 

straight line roughly approximates the plot. This is an in-

dication that the intensity of dying from "other causes" may 

be considered approximately Weibull. 

All these conclusions should of course not be taken too 

literally. The point, so far, is that these simple plots give 

quite a lot of information about the structure in the given data. 

Such information may be used for suggesting various hypotheses. 
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We will now consider how to test some of the hypotheses that 

are suggested from the plots. We will start by showing how 

the pairwise comparisons of the Nelson plots may be made 

precise. It is shown in Aalen (1978b) that reasonable non-

parametric tests for comparison of two Nelson plots, say 

... 1 -2 a (t) and a (t) may pe written in the following way. Let 

s 1 < s 2 < •••• be the successive times at which jumps occur 

-1 -2 -i 
in either a (t) or a (t) I and let ~a (Sj) be the sizes of 

/ 

the jumps. Then a test statistic may be written as 

(2.2) .. 

Where each Wj is a weight which may be chosen as a function 

of what has been observed before the time Sj. Clearly, Tis a 

rather direct rurl reasonable measure of comparison of the two 

plots. By choosing the weights in various ways one gets a 

whole family of possible measures. A general expression of the 

variance of ,.T ,i.s.. given in Aalen ( 1978b) where it is also shown 

that T can under certain circumstances be regarded as approxi-

mately normally distributed. 

It turns out that most nonparametrictests that have been 

suggested for censored data can be represented in the above 

way by choosing the W's appropriately. (In the context of 

competing risks one can think of the causes of death which 

are not of interest for the analysis at the moment as corre­

sponding to censoring). Let Y1 (t) an Y2 (t) be the numbers at 

risk at timet corresponding to the a1 (t) and a2 (t) respectively. 
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Then the well known Gehan (or Breslow) test arises by 

choosing 

(2.3) W. = Y 1 (S.) Y 2 (S.). 
J J J 

The Savage (or logra~x, Mantel-Haenzel, Cox) test arises 

by choosing 

(2.4) w. = 
J 

y1 (S.) 
J 

y1 (S.) + 
J 

As an illustration we will compute the Gehan statistic for 

the difference between the two plots in Figure 6. By 

inserting (2.3) into (2.2) and considering the definition 

( 2. 1) we get 

2 1 
T = L[Y (S.)I.- Y (S.)J.] 

j J J J J 

-1 
where I. = 1 if the jump at timeS. occurs in S (t) and 

J J 

I. = 0 otherwise. J. is defined similarly with respect to 
J J 

-2 s . 

Hence, T is computed by the following simple algorithm. 

Whenever a jump occurs in process 1, one counts the number 

at risk for process 2, and then add these numbers up. 

Whenever a jump occurs in process 2, one substracts 

the number at risk for process 1. 
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From the general theory it follows that the variance of T 

is given by 

Performing the computations for the plots in figure 5 we get 

T = 1326 

v = 145632 

Hence, the standardized test statistic T/IV = 3.47. Com-

paring this with the standard normal distribution one finds 

a p-value of less than 0.001. Hence, the difference observed 

in Figure 6 is strongly significant. 

Most of the Nelson plots in Figure 2 and 3 seem to be convex 

upwards, implying an increasing death intensity (mortality 

rate). This feature of the plots can be tested by means of 

a test suggested in Section 3.4 of Aalen and Hoem (1978). 

(In fact, Richard Gill has pointed out certain difficulties 

with the theory of that part of our paper. However, those 

difficulties can probably be resolved). I will not describe 

the test here, just indicate its application to our data. 

As an example, we will test whether the apparent upwards 

convexity of the Nelson plot for "other causes" in Figure 2 

is significant. We will look at the period from 200 to 700 

days. The cumulative total time on test statistic in Aalen 

and Hoem (1978, Section 3.4) assumes the value 18.45. 
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The value of the normalized version mentioned on p. 99 of 

the same paper is equal to 2.18. This is to be compared 

with a standard normal distribution, giving a p-value of 

1.5 %. 

Finally, it should be mentioned that one can apply Kolmogorov­

Smirnov type procedures. One way of doing this is outlined 

in Section 8 of Aalen (1976). Other possibilities are 

studied in Fleming and H~rrington (1981) and Fleming et. al. 

(1980) where extensive discussions are given together with 

a practical example. This work is partly based on that of 

the present author, and hence constitutes an example of the 

usefulness of the martingale approach. 
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Table 1 

From: D.G. Hoel and H.E. Walburg, Jr.: Statistical analysis of survival experiments. 
J .Natl. Cancer Inst. 49: 361-372, 1972. 

Necropsy data for RFM male mice exposed to 300 R X radiation at 5-6 weeks of age 

Cause of death Individual ages at death (days) 

A. Conventional mice (95) 

Thymic lymphoma 159, 1B9, 191, 19B, 200, 207, 220, 235, 245, 250, 256, 261, 265, 
(23%) 266, 2BO, 343,/356, 3B3, 403, 414, 42B, 432 

Reticulum cell 317, 31B, 399, 495, 525, 536, 549, 552, 554, 557, SSB, 571, 5B6, 
sarcoma (40%) 594, 596, 605, 12, 621, 62B, 631, 636, 643, 647, 64B, 649, 661, 

663, 666, .. 670, 695, 697, 700, 705, 712, 713, 73B, 74B, 753 

Other causes (37%) 163, 179, 206, 222, 22B, 249, 252, 2B2, 324, 333, 341, 366, 3BS, 
407, 420, 431, 441, 461, 462, 4B2, 517, 517, 524, 564, 567, SB6, 
619, 620, 621, 622, 647, 651, 6B6, 761, 763 

B. Germfree mice (B2) 

Thymic lymphoma lSB, 192, 193, 194, 195, 202, 212, 215, 229, 230, 237, 240, 244, 
(35%) 247, 259, 300, 301, 321, 337, 415, 434, 444, 4BS, 496, 529, 537, 

624, 707, BOO 

Reticulum cell 430, 590, 606, 63B, 655, 679, 691, 693, 696, 747, 752, 760, 77B, 
sarcoma (lB%) B21, 9B6 

Other causes (47%) 136, 246, 255, 376, 421, 565, 616, 617, 652, 655, 65B, 660, 662, 
675, 6Bl, 734, 736, 737, 757, 769, 777, BOO, B07, B25, BSS, B57, 
B64, B6B, B70, B70, B73, BB2, B95, 910, 934, 942, 1015, 1019 
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Figure 2. Estimated cumulative death intensities for conventional mice. 
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2C . Generalized Kaplan-Meier estimates when the risks are 

independent. 

When the risks can be assumed independent, then Kaplan-Meier 

plots, as used by HoeL and Walburg (1972), may give interesting 

information. In this section we will show the use of a 

generalized Kaplan-Meier estimate suggested in Aalen (1978a). 
/ 

The idea is the following: We assume that one of the causes 

of death could be eli~inated, and we then ask what pattern 

would be observed as regards deaths from the remaining causes. 

This sort of question has an old history. Posed as a mathematical 

question it originated with Daniel Bernoulli who in 1760 asked 

what mortality pattern would be observed if smallpox were 

eradicated. 

A Kaplan-Meier plot answers this question as regards the total 

mortality. We will consider the more general question of the 

probability of dying from each specific of the remaining causes. 

If one shall be able to answer such a question from mortality 

data only, then the assumption is essential that the risk 

being eliminated is independent of the others. This fact has 

been discussed a lot in the literature, see for instance David 

and Moeschberger (1978). 

We still assume that there are k causes of death (risks) . We 

consider cause no. k as being eliminated (i.e. the mortality is 

put equal to 0) and we want to estimate the new probability, 

P. (t,k), of dying from cause no. i during the time interval 
l 

(O,t). We use the notation in (2.1). The generalized Kaplan-

Meier estimate is given by the following formula: 
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( 2. 5) P. (t,k) = I 
.1. T .. <t 

[ II (1- 1 )] ~1=--~ 
Y(T ) Y(T .. ) 

.l..J-
mn .l..J T <T .. 

mn .l..J 
m<k 

An estimate of the va~iance is given in section 5 of Aalen 

(1978 a). In section 4 of that paper it is shown that the 

P. (t,k) may be considered approximately normally distributed 
.1. 

under certain assumption~. 

As an example we cons'ider the data of Hoel and Walburg, asking 

what would be the probabilities of dying from reticulum cell 

sarcoma and "other causes", respectively, among the conventional 

mice, if thymic lymphoma was eliminated. The estimated 

probabilities computed by means of (2.5) are given in Table 2. 

We will take the opportunity in this section to illustrate also 

the use of the results in Aalen and Johansen (1978). That paper 

is concerned with estimating the transition probabilities of 

a Markov chain when one has censored observations. A competing 

risks model is a particular case of a Markov chain. Eliminating 

one risk in the fashion done before is equivalent to regarding 

this risk as censoring. Hence the results of Aalen and Johansen 

(1978) may be applied. 

We will consider the same example as before. Eliminating thymic 

lymphoma, the remaining model can be described as a Markov chain 

on the state space shown in Figure 9. 
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alive 
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1 dead from reticulum 
cell sarcoma 

dead from "other causes" 

Fig. 9. The state space of a competing risks model with thymic 

lymphoma being eliminated. 

The transition probability matrix P(t) is given by 

0 1 2 

0 ( 1"Pl (t,3) - P2 (t,3) p1 (t,3) 

1 0 1 

2 0 0 

The matrix is estimated in the following way. Whenever a 

transition takes place from state 0 to state 1 (at time T1j' 

say) one computes the following matrix: 

(2.6) 

1 - 1 

( 
Y(T 1j) 

0 

0 

1 
Y(T1j) 

1 

0 

0 

0 

1 

\ 
) 

If the transition takes place from state 0 to state 2 one 

computes the following matrix: 
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1 - 1 
0 1 

Y(T2 j) Y(:2j)) 
( ( 2. 7) 0 1 

0 0 1 

One then multiplies together all matrices of the form (2.6) 

and (2.7) for T1 j ~ t and T2 j < t. The order of the matrices 

in the multiplicatio~ shall follow the chronological order of 

the T's. The result is the estimate P(t) of P(t). 

This procedure produces the same result as (2.5). It does 

however have a more general scope since it is applicable to 

much more general Markov chains than competing risks models. 

Also, the procedure should have a simple intuitive appeal. 

The above procedures can be easily modified to cover the 

following situation. Instead of eliminating entirely one of 

the risks, one might assume that the death intensity of this 

risk was reduced (or increased) by a certain amount. If for 

instance the intensity of dying from cause no. i was reduced by 

50 %, what would be the observed mortality pattern ? This 

situation can be described by the following Markov model, with 

the intensity of transition to state no. 3 being halved. The 

state space is shown in Figure 10. 

alive 

l \ ,,-
. \/" ,_ . 

dead from ret~(cell 
sarcoma 

dead from "other causes" 

dead from thymic lymphona 
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(This figure heading belongs to the figure on the bottom 

of page 29). 

Fig. 10. The state space of the competing risks model (with 

the death intensity of thymic lymphoma being halved). 

The task, now is to estimate the transition probability matrix 

P*(t) given by 

0 ' 1 2 3 

* * * * 
0 1 - p 1 ( t) - p2,( t) - p 3 ( t ) p 1 (t) p 1 ( t) 

1 0 1 0 0 

2 0 0 1 0 

3 0 0 0 1 

* where P. (t) denotes the probability of dying from cause no. i 
l 

during the age interval (O,t) when the death intensity for 

thymic lymphoma is halved. 

A modification of the derivations in Aalen and Johansen (1978) 

* gives the following procedure for estimating P (t) . One should 

multiply in chronological order all matrices of the following 

kind (for T. . < t) : 
lJ -

(i) When a transition takes place from state 0 to state 1 (at 

time T1 j), use the following matrix: 
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1 1 
0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

(ii) When a transit.ion takes place from state 0 to state 2 

(at time T2 j) use the following matrix: 

0 1 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

(iii) When a transition.takes place from state 0 to state 3 

(at time T3 j) use the following matrix: 

1 0 0 1 

1 0 

0 0 1 0 

0 0 0 1 
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* * * The resulting estimates of P 1 (t), P 2 (t) and P3 (t) are given in 

Table 2. 
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Table 2 

Estimated partial probabilities of dying from the respective 

6auses. Data from Hoel and Walburg (1972). 

Thymic lymphoma is The death intensity of thymic 
Age eliminated lymphoma is halved 

in days Ret.cell. Other Ret. cell. Other Thymic 
sarc. causes sarc. causes lymph. 
p (t,3) P..,(t,3) P 1 *(t) P..,*(t) P .... *(t) 

-= ,.J 

50 0.00 0. 0,0 0.00 0.00 0.00 

100 0.00 0.00 0.00 0.00 0.00 

150 0.00 0.00 0.00 0.00 0.00 
•, 

200 0.00 0.02 0.00 0.02 0.03 

250 0.00 0.07 0.00 0.06 0.05 

300 0.00 0.09 0.00 0.09 0.08 

350 0.03 0. 13 0.02 0. 12 0.09 

400 0.04 0. 16 0.03 0. 15 0. 10 

450 0.04 0.21 0.03 0. 19 0. 12 

500 0.05 0.25 0.05 0.23 0. 12 

550 0.10 0.30 0.08 0.27 0 .12 

600 0.21 0.34 0. 18 0.30 0. 12 

650 0.35 0.41 0.30 0.36 0. 12 

700 0.45 0.44 0.39 0.39 0 .12 

750 0.52 0.44 0.45 0.39 0. 12 

800 0.53 0.47 0.46 0.41 0. 12 
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2D. Data £rom a study of the IUD. Cox residuals. Mixing 

of the intensities. 

We will conclude this presentation of methods for competing risks 

by giving an example where the Nelson plots suggest a simple 

parametric model. The example also illustrates the usefulness 

of considering mixing distributions on the intensities. 

Peterson (1975) presents data on the experiences of a sample 
... ~ 

of 100 women with an-experimental intrauterine contraceptive 

device (IUD) . The women were followed until one of three events 

occurred: Expulsion of IUD, removal of IUD due to medical or 

personal reasons, planned removal of IUD. We are going to 

consider the two former events which both have a considerable 

amount of randomness in them. The relevant data, together with 

estimated cumulative intensities and their standard deviations 

are given in Table 3. We will analyze the data in a way which 

is different from that of Peterson, but in our opinion more 

illuminating. 

Figure 11 shows the Nelson plot for expulsions and unplanned 

removals respectively. Clearly the intensity of unplanned 

removals remains more or less constant throughout the time 

period, while the intensity of expulsions, after being initially 

above that of removals, drops sharply after a short time. 

(This seems to be a common phenomenon, see Aalen (1972)). 

We will now take a closer look at the functional form with which 

the intensities may be approximated. 
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Assuming first a constant intensity of unplanned removal, 

this may be estimated by the usual occurrence/exposure rate, 

i.e. the total number of unplanned removals is divided by the 

sum of observed individual times with IUD in situ. This gives 

-4 a value of 8.98 x 10 pr day. The corresponding straight-

lined cumulative intensity is drawn in Figure 11, and is seen 

to approximate well to the Nelson plot. This indicates that 

unplanned removals follow, more or less, a Poisson process . 
. •, 

In other words, an unplanned removal is1 considered on a group 

basis, more or less a haphazard event, becoming neither more 

nor less· likely as time goes on. (Of course, it should be 

remembered that we only have data for about a year) . 

In order to check whether the deviation of the Nelson plot 

from the straight line can be explained by random variation, 

we will compute a set of residuals 

as suggested by Cox (1979). Let s 1 be the total time at risk 

up to the fourth removal (i.e. s 1 is the sum of the times during 

this period that each individual has had the IUD in situ) . 

Let s 2 be the total time at risk between the fourth and the 

eight removal, s 3 between the eight and the twelfth, and so on 

up to s 6 . 

Define 

j = 1, ... '6 

where log denotes natural logarithm. If the intensity, say p, 

of removal is constant, then z1 , ... , z6 is approximately 
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independent random variables with expectation log p and 

standard deviation 0.53. Inserting our estimate of p 

we get log p = -7.02. Some computation gives us the following 

values for the Z's: 

z1 = -6.93, z2 = -7.16, z3 = -7.44 

z4 = -6.71, z5 = -7.47, z6 = -6.35 

We see that the maximal difference between any pair of Z's is 

1.12. ·This is a little more than two standard deviations,and there­

fore no rrore than one should expect to get because of random 

variation. Hence, there is for unplanned removals no significant 

deviation from constant intensity. 

We will note at this point a connection between the above 

approach and the results of Aalen and Hoem (1978). In that 

paper one considers a transformation of the time axis, the new 

time being measured in units of total time at risk (this 

concept being defined as above) . This means that "time" runs 

fast when a large number of people are at risk, and more slowly 

when fewer people are at risk. It is shown that when this time 

transformation is performed, then the process of events can be 

considered a Poisson process. In our example, for instance, 

the occurrence of unplanned removals and of expulsions would 

both constitute Poisson-processes. 

The above method of Cox simply consists in applying standard 

methods for Poisson-processes to this time transformed process. 
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The contribution of Aalen and Hoem (1978) in this context, 

is to give a thorough justification for the validity of this 

time transformation in a general setting. In addition it follows 

from results in that paper that, for instance, the Poisson-process 

of unplanned removals, and that of expulsions in our example, 

will be independent of each other. It follows that if Cox 

residuals were computed also for expulsions, it would be 

independent of the Cox residuals for unplanned removals. This 

may be. important for' application of the residuals. 

Considering now expulsions, we will apply a method which gave 

good results in a similar problem studied in Aalen (1972, 

Section SA) . We will assume that for each individual there is 

a constant intensity of expulsion throughout the period considered. 

The size of this intensity, however, varies in the population, 

some women being at high risk with respect to expulsion, and 

others being at low risk. To be more specific, we will assume 

that the intensity varies according to a gamma distribution, 

with density: 

f (A) 
a-1 -BA A e , A > 0 

Here A is the intensity, and a and B are the parameters of 

the distribution. Even if the individual intensity is constant, 

the observed intensity of expulsion in a group of individuals 

will not be constant. This is because the high risk individuals 

will tend to leave the risk group (due to expulsion) pretty 

soon, while those in the low risk group will tend to remain. 

Hence the group intensity will necessarily decrease with time. 

Under the above assumption it is a standard result that the 
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group intensity will be 

jJ(t) 
a = S+t 

where t is time from insertion of IUD. The corresponding 

cumulative intensity is given by 

t 
f lJ(S)ds = 
0 

(log meaning natural logarithm) . 

The question, now, is whether a and B may be chosen so that 

this function fits well to the Nelson plot for expulsions in 

Figure 11. Such a fitting can of course be done in a proper 

mathematical fashion, but we have contented ourselves with a 

trial and error approach. This produces the values a = 0.035, 

B = 7, that is 

t 

f lJ(s)ts 
0 

= 0.035 log(1 + !) 
7 

This curve is drawn in Figure 11and seen to approximate well 

to the Nelson plot. 

The fact that we get a reasonable result, does, of course, not 

prove that our detailed mathematical model is a true description 

of what is going on. Many other models would have produced the 

same 1J(t). On the other hand, the model we have presented is 

a simple and standard one, and hence it is interesting that it 

produces a good result. A similarly good fit to another set of 

data was presented in Aalen (1972, p. 53). 
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Table 3 

IUD-data from A.V. Peterson (1975). 

Expulsions 

Time No. Estimated Stand.dev. 
in days at risk cumulative of est. 
since intensity cum. int. 
insertion 
of IUD 

2 100 0.010 0.010 

8 99 '.' 0.020 0.014 

10 98 0.030 0.017 

25 95 0.041 0.020 

28 93 0.052 0.023 

28 92 0.063 0.026 

32 91 0.074 0.028 

63 88 0.085 0.030 

86 86 0.097 0.032 

159 80 0.109 0.035 

354 48 0. 130 0.040 

(The table continues on the next page) . 
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Removals (unplanned) 

Time Estimated Stand. dev. 
in days No. cumulative of est. 

since insertion at risk intensity cum. int. 
of IUD 

14 97 0.010 0.010 

21 96 0.021 0.015 

27 94 0.031 0.018 

40 90 0.042 0.021 

42 89 0.054 0.024 

83 87 0.065 0.027 

86 85 0.077 0.029 

92 84 0.089 0.031 

110 83 0. 101 0.034 

147 82 0.113 0.036 

148 81 0 .125 0.038 

165 79 0.138 0.040 

166 78 0. 151 0.042 

178 77 0. 16 4 0.044 

183 76 0. 177 0.046 

203 75 0. 190 0.048 

207 74 0.204 0.050 

272 73 0.218 0.051 

272 72 0.232 0.053 

288 71 0.246 0.055 

288 70 0.260 0.057 

288 69 0.274 0~059 

297 68 0.289 0.061 

318 67 0.304 0.062 

331 64 0.320 0.064 

376 21 0.367 0.080 
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Figure 11. Estimated cum. intensities for expulsion and unplanned 

removal of IUD. The curves are fitted as explained in 

the text. 
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3. A BIRTH AND DEATH -PROCESS 

We will consider a population undergoing a simple birth and 

and death process (see for instance Karlin (1966)). Let X(t) 

be the population siz~ at timet, and let A(t) and ~(t) denote 

the time-dependent intensities of an individual giving birth 

to a new individual or dying. The process B(t) counts the 

number of births that oc~ur in the population (i.e. B(t) 

increases by 1 each .t,ime a birth happens) , while D (t) counts the 

deaths~occurring. The intensity processes of B(t) and D(t) are 

A(t) X(t) and ~(t) X(t), and hence the situation falls within 

the general framwork of Aalen (1978b). This means that the 

methods discussed for competing risks may be extended to cover 

analysis of our birth and death process. 

Keiding (1977) analyzes a set of observations of births and deaths 

in a baboon troop over a year. The object of the study is to 

find out whether the observations fit well with a simple birth 

and death process with constant A(t) and ~(t). Among other 

methods he applies the extended Nelson plot suggested in Aalen 

(1978b). We will review briefly part of Keidings results . 

Let T1 < T2 < • • • < T be the successive times at. which the 
n 

first n births occur. We wish to estimate the cumulative birth 

intensity 

t 
f3(t) = f A(S) ds. 

0 

In analogy with the approach used for the competing risks model, 

we use the following estimate: 
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S(t) 

where the minus sign means that one shall take the value of 

X(t) just prior to t~me T .. 
l 

The estimated cumulative intensity for deaths is, of course, 

defined analogously. The resulting Nelson plots for Keiding's 

data are given in Figure 12. (Three emigrations are included 

among the deaths) . It is clear from the figure that births 

and deaths happen mainly in the latter part of the year, and 

it does not seem that constant intensities are warranted. 

The generalized cumulative total time on test statistic suggested 

by Aalen and Hoem (1978), section 3.4,may be applied here. For 

deaths & emigrations this yields the value of 10.23 (n = 15) 

giving a p-value less than 0.5 %. For births we get the non-

significant value of 5.26 (n = 10). Hence the deviation from 

a constant intensity is statistically significant only for 

deaths & emigrations. This shows that a stationary birth and 

death process does not explain the observations well. 

One will observe that in Figure 12 the Nelson plot is drawn as 

a continuous pathwise constant curve. This is a change from 

earlier when we have presented it as discrete points indicating 

where the jumps take place. The presentation in Figure 12 is 

the most correct one, following literally the definition of 

the Nelson plot. However, when there is a lot of jumps and 

several Nelson plots in a diagram, it may give a better picture 

when one uses the pointwise representation. 
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4. AN EXAMPLE FROM THE THEORY OF EPIDEMICS 

D.M. Thompson and W.H. Foege have studied an outbreak of 

smallpox in a closed community of 120 people in southeastern 

Nigeria. 30 people b~came ill. The time of first symptoms 

for each individual was registered. When a person became ill, 

he was immediately removed from the population. The data are 
/ 

given in Bailey and Thomas (1971), and are quoted in the table 

below. Becker (1977) analyzes the data fran a different point of view. 
'· 

Times in days of individual outbreaks of smallpox: 

0, 13, 20, 22, 25, 25, 25, 26, 30, 35, 38, 40, 40, 42, 42, 

47, 50, 51, 55, 55, 56, 57, 58, 60, 60, 61, 66, 66, 71, 76. 

We will be interested not in the time of outbreak of disease, 

but in the time that infection took place. Of course, this can 

not be observed directly. We know, however, that the incubation 

period for smallpox is about 12 days. If we therefore subtract 

12 days from each of the numbers in the table above, we shall 

get approximately the times of infection. In fact, if we define 

time 0 as being the time of the first infection, then the 

numbers in the table can, on this new scale, be considered as 

just the times of infection. Each infected person is then, 

effectively, being left to remain in the population for 12 days 

after this time, and is then removed. During these 12 days 

he may infect other people in the community, he is an infective. 

(This rough procedure was suggested by Steffen Lauritzen) • 

Define the following quantities: 
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N(t) - number of persons that have been infected during the time 

interval (O,t). 

I(t) -number of infectives just prior to timet (i.e. number 

of people that have :t;>;een infected not more than 12 days prior 

to time t) . 

S(t) -number of susceptibles just before time t. 

A COIIIII\On epidemic model can be formulated in the following 

way: The intensity process A(t) corresponding to the counting 

process N(t) is decomposed as follows: 

A(t) = a(t) I(t) S(t) 

This means that the intensity of infection is proportional with 

the number of infectives and with the number of susceptibles. 

This is, of course, quite reasonable. The function a(t) can 

be considered a measure of the infectiousness of a single 

infected individual. One sees that this model fits the general 

framework of the introduction. 

Let T1<T 2< .... be the successive times of infection. The 

cumulative intensity 

t 

B ( t) = f a ( s) ds 
0 

is then estimated by 
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i3<t) 

with variance estimated by 

L: 1 
T.<t [I(T.)S(T.)] 2 
l- l l 

The results of the computations are given in Table 4 while 

the Nelson plot is shown in Figure 13. The plot shows a slight 

convexity downwards, which would seem to indicate a decreasing 

a(t). This might be reasonable since one would expect the most 

susceptible individuals to become ill first, so that the 

remaining ones would be less susceptible. The question, however, 

is whether this is a statistically significant tendency. 

By the results in Aalen and Hoem (1978) one may perform a time 

transformation to obtain a Poisson process in a similar manner 

as was discussed in section 2D. What corresponds· to "total time 

at risk" in this case, will be the process 

t 

f I ( s) S ( s) ds . 
0 

From the discussion of Section 2D it follows that we can 

compute Cox type residuals in the following manner. Define 

T4 

8 1 = f I ( s) s ( s ) ds , 
0 
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T8 
s 2 = J I(s)S(s) ds, 

T4 

I ( s) S ( s) ,ds. 

Then the following quantities will be analogous of the Cox 

residuals: 

j = 1, •.• , 6 

From our data we get 

z1 = -7.01, z2 = -6.87, 

z3 = -7.44, z4 = -7.46, 

z5 = -6.83, z6 = -6.69, 

z7 = -7.65 

As in section 2D, the standard deviation under the assumption 

of constant a(t) should be 0.53. The maximal deviation among the 

Z's is less than two standard deviations,and hence can very 

well be explained as random variation. 

The cumulative total time on test statistic can also be computed 

in this case, giving the non-significant value of 13.14. 
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Hence, the tendency of decreasing a can not be considered 

significant. Assuming a constant intensity, we may estimate 

it by the generalized occurrence/exposure rate given in Aalen 

and Hoem (1978, p. 97). The estimate is given by 

number of outbreaks (minus the first) a = 
00 

f I(s)S(s) ds 
0 / 

29 ·8. o 10-4 = 36210 - X 

========== 
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Table 4. 

Data and estimated cumulative intensity for the epidemic example. 

Time of No. infectived No.susceptibles 
Estimated Stand.dev. 
cum. int. 

infection I(t) s (t) 8 (t) SD ( S ( t) ) 

13 1 119 0.008 0.008 

20 1 118 0.017 0.012 

22 2 11 7 0.021 0.013 

25 3 116 0.024 0.013 

25 3 ' 0.013 115 0.027 

25 3 114 0.030 0.014 

26 6 113 0.031 0.014 

30 6 112 0.033 0.014 

35 6 1 1 1 0.034 0.014 

38 6 11 0 0.036 0.014 

40 3 109 0.039 0.014 

40 4 108 0.041 0.014 

42 5 107 0.043 0.015 

42 6 106 0.045 0.015 

47 6 105 0.046 0.015 

so 6 104 0.048 0.015 

51 7 103 0.049 0.015 

55 5 102 0.051 0.015 

55 6 101 0.053 0.015 

56 5 100 0. 05,5 0.015 

57 6 99 0.057 0.015 

58 7 98 0.058 0.015 

60 8 97 0.059 0.015 

60 9 96 0.060 0.016 

61 9 95 0.062 0.016 

66 8 94 0.063 0.016 

66 9 93 0.064 0.016 

71 6 92 0.066 0.016 

76 3 91 0.070. 0.016 
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Figure 13. Estimated cumulative intensity of infection 
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5. ~ffiTING INTENSITIES FOR DROSOPHILA 

Christiansen (1971) has carried out experiments concerning 

the mating intensities of Drosophila. Statistical analysis 

of these data is discyssed in Barndorff-Nielsen (1968), 

Andersen (1975) and Aalen (1978 b). In this section we will 

consider a problem which these papers have not taken up. Our 

presentation will illustrate the use of the k-sample tests for 

comparison of countiD:g processes developed by Andersen, Borgan, 

Gill and Keiding (1981). Their theory is also based on the 

martingale approach to counting processes. 

The experiment consists in putting a number of male and female 

Drosophila together in a chamber. One then observes the times 

at which matings start. It is assumed that each fly only mates 

once (at most) during the period of observation. The following 

is a simple model for the experiment: Assume that just before 

time t there are M(t) males and F(t) females who have not yet 

started to mate. Then the intensity for a mating to take place 

is assumed to equal a(t) M(t) F(t), where a(t) is: the intensity 

one would have if only a single couple were present. 

Since we have another case of the multiplicative intensity model 

we can compute once more Nelson plots. Let T1 < T2 < ••• be the 

successive ti~es at which matings start. Then the cumulative 

intensity 
t 

S(t) = f a(s) ds 
0 

is estimated by 
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s (t) = 
2:: t M(T.)F(T.) 

T.< 1. 1. 

1 

1.-

We will use data from three of Christiansen's experiments. 

They were all performed on Drosophila of the "oregon" type. 
•J 

The data are given in Table 5. The Nelson plots (up to the 

time of 2500 seconds) are shown in Figure 14. One sees that 

the curves deviate somewhat from each other, that of experiment 

no. 2 increasing faster than the others. Since all experiments 

are performed in exactly the same way, and with the same type 

of flies, one should hope that the deviation can be accounted for 

by random variation. (It may be mentioned that we have here 

only picked a part of the data for illustration, so that our 

actual conclusion should not be taken too seriously) . 

To study the statistical significance of the deviation observed 

in the plots, we will apply two of the tests of Andersen et al. 

(1981). The null hypothesis is that the function a(t) is 

identical in each experiment. 

The first test is a generalization of the Kruskal-Wallis non-

parametric test. We will describe briefly the simple 

computations. 

Let Ti 1 < Ti 2 < ••• be the successive times at which mating 

start in experiment no. i. Let M. (t) and F. (t) be defined 
1. 1. 

as earlier for experiment no. i. Put Y. (t) = M. (t)F. (t) and 
1. 1. 1. 

Y(t) = y1 (t) +Y2 (t) +Y3 (t). The test statistic is based on the 

quantities 



z. 
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= 2: 
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y (T .. ) 
1] 

2: 
k,j:Tk.<..T 

J-

y. (T .. ) 
1 1] 

i = 1,2,3, 

where (O,T) is the ti~e interval over which the comparison is 

made. The variances of these quantities under the null 

hypothesis, are estimated by 

v .. 
11 

= 2: [ y ( Tk . ) y . ( Tk . ) 
k . ' J 1 J 
,J: Tk .< T J-

while the covariances are estimated by 

2 
y. (Tk.) ] 

1 J 

Let Z be the vector of Z's and V the matrix of V's. Then the 

test statistic is given by 

D = ZT V Z 

(where the superscript T means "transpose"). The distribution 

of D under the null hypothesis is chi-squared with two degrees 

of freedom. 

In our example the statistic D assumes the value 4.65 which 

gives a p-value of about 10 %. (We use T = 3000 seconds) . 

The generalized Kruskal-Wallis statistic used above is most 

sensitive when the values of the Y's are greatest. In our 
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example, this means that differences between the S's over the 

earlier parts of the time interval will have much greater 

effect than those over the latter parts of the interval. 

Another statistic suggested by Andersen et al. (1981) does 

not have such an effect. This is their generalized logrank 

test. The computations can be described in simple terms, like 

the ones above, but we will not give the details here. The 

value of the generalized logrank test for our example is 5.81 
. •, 

which .should again be compared with a chi-squared distribution 

with 2 degrees of freedom. This gives a p-value between 5 and 

6 %. This statistic seems to give somewhat stronger evidence 

of deviation than the previous one. That this is resonable 

can be seen from Figure 14 where it is clear that the curves 

deviate most in the latter part of the time interval. 

In conclusion, one can not say definitely that there is any 

real difference between the a's, although a difference may be 

indicated. One main reason for being cautious about the 

conclusion is that the simple model employed may not be quite 

realistic. 
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Table 5 

Mating of Drosophila. Christiansen's data. 

Exper1.ment no.· 1 Exper1.ment no. 2 Exper1.ment no. 3 

(Performed Oct.19, Performed Nov. 13, (Performed Nov. 17, 
19 70) 1970) 1970) 

I II III I II III I II III 

555 29 39 403 30 37 635 30 40 

742 28 38 625 29 36 710 29 39 

746 27 37 718 28 35 750 28 38 

795 26 36 754 27 34 793 27 37 

934 25 35 782 26 33 906 26 36 

967 24 34 826 25 32 906 25 35 
982 .. 23 33 853 24 31 938 24 34 

1043 22 32 881 23 30 979 23 33 

1055 21 31 890 22 29 998 22 32 

1067 20 30 935 21 28 1048 21 31 

1081 19 29 935 20 27 1083 20 30 

1296 18 28 972 19 26 1210 19 29 

1353 1 7 27 994 18 25 1299 18 28 

1361 16 26 1103 17 24 1299 17 27 

1462 15 25 1 1 1 9 16 23 1336 16 26 

1 731 14 24 1217 15 22 1367 15 25 

1985 13 23 1327 14 21 1469 14 24 

2051 12 22 1427 13 20 1646 13 23 

2292 1 1 21 1445 12 19 1702 12 22 

2335 10 20 1461 1 1 18 

2514 9 19 1477 10 17 

2570 8 18 1532 9 16 

2970 7 17 1646 8 15 

1969 7 14 

I: Times at \>Thich matings start. 

II: Number of males which have not started mating up to the 

time given. 

III: Number of females which have not started mating up to the 

time given. 
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