4,103 research outputs found

    The estimation of neutrino fluxes produced by proton-proton collisions at s=14\sqrt{s}=14 TeV of the LHC

    Full text link
    Intense and collimated neutrino beams are produced by charm and beauty particle decays from proton-proton collisions at the LHC. A neutrino experiment would be run parasitically without interrupting the LHC physics program during the collider run. We estimate the neutrino fluxes from proton-proton collisions at s=14\sqrt{s}=14 TeV of the LHC with the designed luminosity, 10^{34} \lumi. By mounting about 200 tons of fiducial volume of a neutrino detector at 300 \m away from the interaction point, about 150,000 of charged current neutrino events per year can be observable.Comment: 8 pages, Accepted in JHE

    Cornering New Physics in b --> s Transitions

    Full text link
    We derive constraints on Wilson coefficients of dimension-six effective operators probing the b --> s transition, using recent improved measurements of the rare decays Bs --> mu+mu-, B --> K mu+mu- and B --> K* mu+mu- and including all relevant observables in inclusive and exclusive decays. We consider operators present in the SM as well as their chirality-flipped counterparts and scalar operators. We find good agreement with the SM expectations. Compared to the situation before winter 2012, we find significantly more stringent constraints on the chirality-flipped coefficients due to complementary constraints from B --> K mu+mu- and B --> K* mu+mu- and due to the LHCb measurement of the angular observable S_3 in the latter decay. We also list the full set of observables sensitive to new physics in the low recoil region of B --> K* mu+mu-.Comment: 18 pages, 6 figures, 4 tables. v3: typos correcte

    Supersymmetric constraints from Bs -> mu+mu- and B -> K* mu+mu- observables

    Get PDF
    We study the implications of the recent LHCb limit and results on Bs -> mu+mu- and B -> K* mu+mu- observables in the constrained SUSY scenarios. After discussing the Standard Model predictions and carefully estimating the theoretical errors, we show the constraining power of these observables in CMSSM and NUHM. The latest limit on BR(Bs -> mu+mu-), being very close to the SM prediction, constrains strongly the large tan(beta) regime and we show that the various angular observables from B -> K* mu+mu- decay can provide complementary information in particular for moderate tan(beta) values.Comment: 30 pages, 14 figure

    Bayesian Fit of Exclusive bsˉb \to s \bar\ell\ell Decays: The Standard Model Operator Basis

    Full text link
    We perform a model-independent fit of the short-distance couplings C7,9,10C_{7,9,10} within the Standard Model set of bsγb\to s\gamma and bsˉb\to s\bar\ell\ell operators. Our analysis of BKγB \to K^* \gamma, BK()ˉB \to K^{(*)} \bar\ell\ell and BsμˉμB_s \to \bar\mu\mu decays is the first to harness the full power of the Bayesian approach: all major sources of theory uncertainty explicitly enter as nuisance parameters. Exploiting the latest measurements, the fit reveals a flipped-sign solution in addition to a Standard-Model-like solution for the couplings CiC_i. Each solution contains about half of the posterior probability, and both have nearly equal goodness of fit. The Standard Model prediction is close to the best-fit point. No New Physics contributions are necessary to describe the current data. Benefitting from the improved posterior knowledge of the nuisance parameters, we predict ranges for currently unmeasured, optimized observables in the angular distributions of BK(Kπ)ˉB\to K^*(\to K\pi)\,\bar\ell\ell.Comment: 42 pages, 8 figures; v2: Using new lattice input for f_Bs, considering Bs-mixing effects in BR[B_s->ll]. Main results and conclusion unchanged, matches journal versio

    Universal Constraints on Low-Energy Flavour Models

    Get PDF
    It is pointed out that in a general class of flavour models one can identify certain universally present FCNC operators, induced by the exchange of heavy flavour messengers. Their coefficients depend on the rotation angles that connect flavour and fermion mass basis. The lower bounds on the messenger scale are derived using updated experimental constraints on the FCNC operators. The obtained bounds are different for different operators and in addition they depend on the chosen set of rotations. Given the sensitivity expected in the forthcoming experiments, the present analysis suggests interesting room for discovering new physics. As the highlights emerge the leptonic processes, μeγ\mu\rightarrow e\gamma, μeee\mu\rightarrow eee and μe\mu\rightarrow e conversion in nuclei.Comment: 18 pages, 3 figures; v2 matches published versio

    Implications from clean observables for the binned analysis of B -> K*ll at large recoil

    Get PDF
    We perform a frequentist analysis of q^2-dependent B-> K*(->Kpi)ll angular observables at large recoil, aiming at bridging the gap between current theoretical analyses and the actual experimental measurements. We focus on the most appropriate set of observables to measure and on the role of the q^2-binning. We highlight the importance of the observables P_i exhibiting a limited sensitivity to soft form factors for the search for New Physics contributions. We compute predictions for these binned observables in the Standard Model, and we compare them with their experimental determination extracted from recent LHCb data. Analyzing b->s and b->sll transitions within four different New Physics scenarios, we identify several New Physics benchmark points which can be discriminated through the measurement of P_i observables with a fine q^2-binning. We emphasise the importance (and risks) of using observables with (un)suppressed dependence on soft form factors for the search of New Physics, which we illustrate by the different size of hadronic uncertainties attached to two related observables (P_1 and S_3). We illustrate how the q^2-dependent angular observables measured in several bins can help to unravel New Physics contributions to B-> K*(->Kpi)ll, and show the extraordinary constraining power that the clean observables will have in the near future. We provide semi-numerical expressions for these observables as functions of the relevant Wilson coefficients at the low scale.Comment: 50 pages, 21 figures. Improved form factor analysis, conclusions unchanged. Plots with full resolution. Version published in JHE

    Less Minimal Flavour Violation

    Full text link
    We consider the approximate U(2)^3 flavour symmetry exhibited by the quark sector of the Standard Model and all its possible breaking terms appearing in the quark Yukawa couplings. Taking an Effective Field Theory point of view, we determine the current bounds on these parameters, assumed to control the breaking of flavour in a generic extension of the Standard Model at a reference scale Lambda. In particular, a significant bound from epsilon'/epsilon is derived, which is relevant to Minimal Flavour Violation as well. In the up-quark sector, the recently observed CP violation in D -> pi+ pi-, K+ K- decays might be accounted for in this generic framework, consistently with any other constraint.Comment: 15 pages, 1 figur

    The small x gluon and b\bar{b} production at the LHC

    Full text link
    We study open b\bar{b} production at large rapidity at the LHC in an attempt to pin down the gluon distribution at very low x. For the LHC energy of 7 TeV, at next-to-leading order (NLO), there is a large factorization scale uncertainty. We show that the uncertainty can be greatly reduced if events are selected in which the transverse momenta of the two B-mesons balance each other to some accuracy, that is |\vec p_{1T}+\vec p_{2T}| < k_0. This will fix the scale \mu_F \simeq k_0, and will allow the LHCb experiment, in particular, to study the x-behaviour of gluon distribution down to x ~ 10^{-5}, at rather low scales, \mu ~ 2 GeV. We evaluate the expected cross sections using, for illustrative purposes, various recent sets of Parton Distribution Functions.Comment: 13 pages, 5 figure
    corecore