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Abstract We propose a parametrization for interpreting
some of the presently available data of the B± → K± p p̄
decay, in particular those by the LHCb and Belle Collab-
orations. The model is inspired by the well-known current
and transition contributions, usually assumed in this kind of
decay. However, in the light of considerations as regards the
dominant diagrams and final state interactions, we modify
some parameters of the model, determining them by means
of a best fit to the data. We show the results, which we discuss
in some detail. Moreover, we give some predictions on other
observables relative to the decays.

1 Introduction

The physics of the B-meson has opened a new door in the sec-
tor of hadronic weak interactions. In particular, numerous B
decays, analyzed during more than a decade, have confirmed
the CKM mechanism for CP violation [1]; yet, it is gener-
ally believed that some particular decays of this kind could
reveal new physics beyond the standard model (SM). There-
fore several experiments in this sense have been suggested
or even realized. In particular, data of B± → K± p p̄ decay
have been published recently by the LHCb Collaboration
[2–4].

Three-body baryon-antibaryon B decays were detected
for the first time by ARGUS in 1987 [5]. Although immedi-
ately ruled out by CLEO [6], that claim gave rise to a lively
theoretical interest in the subject for several years: see Ref. [7]
for a complete and thorough review. More recently, this inter-
est was revived [8–12] and new experimental results were
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found by the CLEO [13], Belle [14,15] and BaBar [16,17]
Collaborations.

A three-body decay presents some advantages over a two-
body one. For example, if one chooses a three-body charged
B decay such that all final particles are charged, its detec-
tion is favored. Moreover, an amplitude analysis in different
intervals of the Dalitz plot allows for direct measurement of
the relative strong phases [18].

Baryonic three-body decays of charged B are especially
useful for studying the strong dynamics and, in principle,
for analyzing the observables sensitive to new physics [8].
Indeed, it is customary to assume that final state inter-
actions [19] (FSI) are much smaller [2] than those of
three-meson decays, characterized by large re-scattering
effects [18–20]. This fact would allow for the study of
FSI by comparison between the two different kinds of
decays [2] and therefore could help in determining the
weak phase, which generally presents serious difficulties
[21]. However, as we shall see in the present paper, FSI
might play a surprisingly important role also in baryonic
decays.

Besides, such decays are somewhat advantageous with
respect to the baryonic two-body ones (e.g., B0 → p p̄), in
that they give rise to greater decay rates than two-body bary-
onic decays. This is connected with the threshold baryon-
antibaryon peaks, predicted by Hou and Soni [8] as a con-
sequence of the increasing difficulty of a quark to hadronize
to a baryon at higher energies. In particular, if the final state
includes the proton–antiproton system, the effect is attributed
to re-scattering [22]. Moreover, the decays considered exhibit
intriguing forward-backward (FB) and Dalitz plot asymme-
tries [2,15,17].

This kind of decays is generally described by assuming
two factorizable amplitudes of the type [7,9]

T = 〈M |(q̄3q2)|0〉〈B1B̄2|(q̄1b)|B−〉 and

I = 〈B1B̄2|(q̄1q2)|0〉〈M |(q̄3b)|B−〉,
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called, respectively, transition and current terms. Here M ,B1,
and B̄2 are the final meson, baryon and antibaryon respec-
tively, while b and q (q̄) are the destruction (creation) oper-
ators of the active (light) quarks involved in the decay.

Turning to the decay B± → K± p p̄ (to be named
K decay in the following), it presents two main differ-
ences with respect to the B± → π± p p̄ (π decay from
now on). First, it has a wider p p̄ peak, which may be
explained as an effect of the interference between the tran-
sition and the current contributions [9]: indeed, while sup-
pressed in the π decay, the current term contributes con-
siderably to the K decay and decreases more slowly than
the transition term at increasing p p̄ effective mass. Sec-
ond, the sign of the FB asymmetry (AFB) in the π decay
is opposite to that in the K decay: while the behavior of
the π asymmetry can be explained in the framework of
quark dynamics [7], the other one is more difficult to inter-
pret.

An important feature of the K decay is that it derives con-
tributions from two different amplitudes, typically tree and
penguin, endowed with different weak and strong phases.
Therefore, we expect that data exhibit a sizable direct CP
asymmetry (ACP), to be compared with the SM predictions.
Indeed, this observable has been measured recently to high
precision by the LHCb Collaboration [2]. Unfortunately, as
recalled above, comparison with theory is particularly dif-
ficult in weak decays, owing to the problem of disentan-
gling real CP-violation effects from strong FSI. Therefore,
in the interest of understanding and parametrizing as pre-
cisely as possible the effects of non-perturbative QCD in
hadronic weak decays, we perform a best fit to some available
data, like the differential branching fraction and the asym-
metries AFB and ACP. More precisely, on the one hand, we
adopt for the decay amplitude the parametrization by Ref.
[9]; on the other hand, however, we modify some parameters
by means of a best fit, in view of various considerations. As
we shall see, our analysis, based on the data by Belle [15]
and on the most recent data of LHCb [2], leads to conclu-
sions in contrast with previous ones; in particular, we give
a different answer to one of the main questions illustrated
above, that is, the origin of the FB asymmetry. Lastly, we
make some predictions about other observables measurable
in principle.

Section 2 is devoted to the definition of some observables,
either presently available or measurable in the future, and to
the theoretical function used for interpreting them. In Sect.
3, we present our phenomenological analysis, both assum-
ing factorization and relaxing this assumption; moreover,
we show some predictions of our model. Lastly, in Sect.
4, we discuss the results obtained and draw some conclu-
sions.

2 Observables and theoretical function

2.1 Observables

We fit the data relative to the the differential branching frac-
tion of the decay B± → K± p p̄ [2,15], i.e.,

γ = dB fKp p̄

dmpp̄
. (1)

The LHCb data [2] are re-scaled in such a way that the inte-
gral over all of the p p̄K spectrum equals the total branching
fraction [23], i.e.,

B f (B± → K± p p̄) = (5.9 ± 0.5) · 10−6. (2)

On the other hand, we calculate the CP asymmetry and the
FB asymmetry, whose experimental values are, respectively
[2],

ACP = −0.022 ± 0.031 ± 0.007 (3)

and

AFB = 0.370 ± 0.018 ± 0.016. (4)

The latter is defined as

AFB = N+ − N−

N+ + N− (5)

and N± is the number of events for which cosθp is positive
(negative), θp being the angle between the meson and the
opposite-sign baryon in the p p̄ rest frame. This definition
holds as well for the π decay.

2.2 Theoretical function

2.2.1 Matrix element of the decay

We parametrize the decay amplitude for B± → K± p p̄,
according to Chua et al. [9] (see also Refs. [7,11]), i. e.,

M = GF√
2

(I + T ); (6)

here GF is, as usual, the Fermi constant of weak interac-
tions and I and T are respectively the current and transition
terms, according to the definition given in the introduction.
As regards the current term, we have

I = I1 + I2, (7)
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I1 = 〈K−|Lμ
sb|B−〉

(
4∑

i=1

αi 〈p p̄|Li
μ|0〉 + α5〈p p̄|Rμ|0〉

)
,

(8)

I2 = 〈|K−|L̃sb|B−〉α6〈p p̄|R̃ss |0〉. (9)

On the other hand, the transition term reads

T = 〈K−|L̃us |0〉(α7〈p p̄|Sub|B−〉+α8〈p p̄|Pub|B−〉). (10)

Here we have set

Lμ
sb = s̄Lγ μbL , L1

μ = ūLγμuL ,

L2
μ = ūLγμuL + d̄LγμdL + s̄LγμsL , (11)

L3
μ = s̄LγμsL , L4

μ = euūLγμuL + ed d̄LγμdL

+es s̄LγμsL , (12)

Rμ = ū RγμuR + d̄RγμdR + s̄RγμsR, L̃sb = s̄LbL , (13)

R̃ss = s̄RsR, L̃us = s̄LuL , Sub = ūb, Pub = ūγ5b.

(14)

Moreover, the α are connected to the CKM matrix ele-
ments and to the Wilson coefficients. Focusing on the B−
decay, we have

α1 = VubV
∗
usa2, α2 = −VtbV

∗
tsa3, α3 = −VtbV

∗
tsa4,

(15)

α4 = −3

2
VtbV

∗
tsa9, α5 = −VtbV

∗
tsa5,

α6 = 2VtbV
∗
tsa6, (16)

α7,8 = VubV
∗
usa1 − VtbV

∗
tsa±,

a± = a4 ± a6
2m2

K

mb(ms + mu)
. (17)

The numerical values of the a and of the V are listed in
the appendix. The formulas of the B+ decay are obtained by
taking the complex conjugates of the CKM matrix elements.
Since Vub is the only complex CKM matrix element in the
equations above, only α1, α7, and α8 are involved in the CP
asymmetry.

The various (non-perturbative) matrix elements of the
quark operators are connected to some form factors, as shown
in the appendix. As a result we get

M = GF√
2

1

2mp

4∑
l=1

βl ū(pp)Olv(pp̄). (18)

Here pp and pp̄ are the four-momenta of the proton and of
the antiproton respectively; u and v are their standard Dirac
spinors, normalized as ūu = −v̄v = 2mp, where mp is the
proton mass. Moreover,

O1 = p/B, O2 = p/Bγ5, O3 = I, O4 = γ5, (19)

with pB being the four-momentum of the decaying resonance
B. Lastly, the coefficients β are

β1 = 2F1

4∑
i=1

�iξi − fKmbα8FV 5, (20)

β2 = 2F1

4∑
i=1

giAηi − fKmbα7FA, (21)

β3 = 
 · δ

2mp
F1

4∑
i=1

ξi �̂
i − fKmbα8FP , (22)

β4 = F0

[
rp2

K

2mp

4∑
i=1

ηi h
i
A + α6

m2
B − m2

K

mb − ms

×
(
mp

ms
g3
A + p2

K

4mpms
h3
A

)]
+

− fKmbα7FP − 2(r + 1)mpF1

4∑
i=1

giAηi

+2mp

(
r F0

4∑
i=1

giAηi + fKmbα7FA

)
. (23)

Here

ξi (ηi ) = ±αi + α5δi,2, (i = 1, 2, 3, 4),

r = m2
B − m2

K

(pp̄ + pp)2 , (24)

l = 2pB − (1 + r)(pp̄ + pp), δ = pp̄ − pp, (25)

pK is the four-momentum of the K -meson, mb(s) the masses
of the quarks; mK and mB are the meson masses. Moreover,
fK is the decay constant of the K -meson and F0, F1, FA,
FP , FV 5, �i , �̂i , giA, and hiA (i = 1 to 4) are form factors. In
particular, �̂i – related to the time-like nucleon form factors,
as well as the �i – have been set equal to zero, accord-
ing to Ref. [9]; we shall discuss this assumption in Sect. 4.
In this connection, it is worth noting that F0,1, as well as
the corresponding proportionality factors S0,1, defined in the
appendix, have the dimensions of an energy, unlike assumed
in Refs. [9,24].

Lastly, as we shall see in the next section, our analysis
involves also the π decay, for which some variations have to
be performed: first of all, one has to replace sL(R) with dL(R),
fK with fπ , ms with md and Vus , Vts with Vud , Vtd ; second,
the values of some ai and parameters in the form factors have
to be changed, as shown in the appendix.

2.2.2 Calculations of observables

The modulus squared of the matrix element (18) reads

123



543 Page 4 of 10 Eur. Phys. J. C (2015) 75 :543

|M|2 = G2
F

2

1

4m2
p

{
4∑

l=1

|βl |2�ll + 2
[
�13�(β1β

∗
3 )

+ �24�(β2β
∗
4 )

]}
. (26)

Here

�11 = 4[2pB · pp pB · pp̄ − m2
B(m2

p + pp · pp̄)], (27)

�22 = 4[2pB · pp pB · pp̄ + m2
B(m2

p − pp · pp̄)], (28)

�33 = 4(−m2
p + pp · pp̄), (29)

�44 = 4(m2
p + pp · pp̄), (30)

�13 = 4mp pB · (pp̄ − pp), (31)

�24 = 4mp pB · (pp̄ + pp). (32)

Then the differential decay width is

d = (2π)4

2mB
|M|2�3

i=1

4m2
pd3 pi

(2π)32Ei
δ

(
mB −

3∑
i=1

Ei

)
δ3

×
(

3∑
i=1

pi

)
, (33)

where Ei andpi (i = 1 to 3) are the energies and the momenta,
respectively, of the proton, of the antiproton and of the K -
meson in the B rest frame. By integrating over all variables
but the momentum of the proton, we get

d = m2
p

4(2π)4mB
|M|2 p3

d3 p1

E1E2
, (34)

where p3 = |p3|. In order to calculate the FB (or helicity [2])
asymmetry, it is convenient to express energies and momenta
as functions of kinematic quantities in the p p̄ rest frame. To
this end, we perform a Lorentz boost from that frame to the B
rest frame. Moreover, we integrate over the azimuthal angle
of the proton: since |M|2 does not depend on it, we get

d = Jm2
p p3π

2
p

24π3mB
|M|2

(
1

4
E2

0 − p2
3

t
π2
z

)−1

dπpdcosθp.

(35)

Here πz = πpcosθp , πp is the modulus of the momentum
of the proton and of the antiproton in the p p̄ frame and θp the
helicity angle [2], between the meson and the opposite-sign
baryon in the same frame; moreover, t = 4(m2

p + π2
p) is the

effective mass squared of the p p̄ system, E0 =
√
t + p2

3 and

J = E0√
t
−4πz

dp3

dt
+8π2

z√
t

[
1

2E0

(
1 + dp2

3

dt

)
− E0

2t

]
. (36)

Taking into account energy-momentum conservation, we
have

p3 = 1

2mB

[
(m2

B − m2
K )2 − 2t (m2

B − m2
K ) + t2

]1/2
. (37)

Our analysis requires the formulas for the differential
decay width and for the differential FB difference, as func-
tions of the p p̄ invariant massmpp̄ =

√
t . To this end, we per-

form the appropriate integrations over cosθp – respectively,∫ 1
−1 and

∫ 1
0 − ∫ 0

−1 – expressing the Lorentz invariant coeffi-
cients �i j in terms of the kinematic variables just defined.
The results are

d

dmpp̄

(
d�

dmpp̄

)
= G2

F

2

mpp̄πp p3

44π3mB
I (πp)[�I (πp)]. (38)

Here

I (πp) =
3∑

i=1

ρi Gi , �I (πp) =
3∑

i=1

ρi�Gi , (39)

with

ρ1 = 8m2
B(|β1|2 + |β2|2), (40)

ρ2 = −8
{
m2

B[(m2
p + π2

p)|β1|2 + π2
p(|β2|2] − π2

p(|β3|2+
+ [(m2

p + π2
p)|β4|2 − mpmBE0�(β2β

∗
4 )

}
, (41)

ρ3 = 16mpmB p3t
−1/2�(β1β

∗
3 ), (42)

G1 = 2

(
A + 1

3
C

)
,

G2 = 1

h

[(
A

a
+ aC

)
ln

a + 1

|a − 1| − 2C

]
(43)

G3 = πp B

h

(
2 − a ln

a + 1

|a − 1|
)

, (44)

�G1 = −B, �G2 = B

h
ln

|a2 − 1|
a2 , (45)

�G3 = −πp

h

[
(A + Ca2)ln

|a2 − 1|
a2 + C

]
(46)

and

A = E0√
t
, B = 4πp

dp3

dt
,

C = 8π2
p√
t

[
1

2E0

(
1 + dp2

3

dt

)
− E0

2t

]
, (47)

a = E0
√
t

2πp p3
, h = p2

3π2
p

t
. (48)

Equation (38) allow one to calculate several observables,
to be compared with data. In particular, we are inter-
ested in the quantities defined in Sect. 2.1 – that is, the

123



Eur. Phys. J. C (2015) 75 :543 Page 5 of 10 543

differential and total branching fractions and the over-
all FB and CP asymmetries – and in the differential CP
asymmetry,

ACP = γ − − γ +

γ − + γ + , (49)

where γ is defined by Eq. (1).

3 Phenomenological analysis

Here we compare the theoretical function just written with
the available observables listed in Sect. 2.1, that is, the
differential branching fraction and the overall CP and FB
asymmetries. In particular, as regards the first observable,
we exclude the contribution of the two charmonium bands,
around 3.1 GeV and around 3.6 GeV. Concerning the form
factors involved in Eq. (38), first we adopt the factorization
assumption, like Chua et al. [9]. However, as we shall see,
this disagrees with data [2,15]. Therefore we shall propose
a modification of the model, in view of some considerations
about the main contributing graphs.

3.1 Factorization assumption

As a first attempt, we assume factorization for the current
and transition terms, according to Refs. [7,9,11,12] and refs.
therein. Indeed, this scheme generally describes the three-
body baryonic B decays in a satisfactory way; in particular,
it seemed to be supported [9] by the early data of the K and
π decays [25]. Therefore a comparison with the most recent
data of those decays [2,15] is in order.

In the context of factorization, the transition term has the
same proportionality coefficient for the K decay as for the π

decay; as regards the current form factors, the proportionality
coefficients have been calculated by Melikhov and Stech [24]
(see also Ref. [9]).

In the case of the π decay, the penguin amplitude is sub-
dominant with respect to the color-allowed tree diagram [17],
even taking into account re-scattering effects to be discussed
in Sect. 3.2. Therefore, the current term, which derives con-
tributions almost exclusively from the penguin amplitude, is
suppressed with respect to the transition term, which con-
sists, instead, of tree and penguin contributions. Incidentally,
in that decay, also a subdominant, color-suppressed tree dia-
gram has to be accounted for. It corresponds, in the case of
the B− decay, to the quark subprocess b → uūd, followed
by recombination of the d-quark with the spectator ū to form
the π−, and by the fragmentation of the active uū pair into
p p̄; the p̄ is next to the π− in rapidity space and can resonate
with it as a �−−, giving a negative contribution to the FB
asymmetry.

γ∗

ū

ū

d̄

d

u

u

Fig. 1 Diagram of annihilation of a virtual γ into p p̄

The above evaluation about the dominating diagrams
agrees qualitatively with the numerical results of the current
form factors given in Ref. [24]; indeed, the current term turns
out to be negligibly small for the π decay [9]. Therefore, in
a simplifying assumption, we neglect the current term; we
impose as well the functions FV 5 and FP to vanish, accord-
ing to Ref. [9]. Then our expression of the branching fraction
depends only on FA, whose proportionality coefficient isCA;
imposing the branching fraction to be equal the experimental
value [23],

B f (B± → π± p p̄) = (1.62 ± 0.20) · 10−6, (50)

yields

|CA| =
(

42.1+2.4
−2.6

)
GeV5. (51)

Factorization implies that this contribution – up to the sign
of CA, and up to some constants, as explained at Sect. 2.2.1 –
should be present also in the K decay. Here, however, also the
current term is important [9], since, in this case, it receives
contributions exclusively from the penguin amplitude, which
is dominant over the tree amplitude. This fact is confirmed by
the sizes of the proportionality coefficients of the current form
factors for that decay [24]. Therefore, in order to calculate the
current term, we insert into Eqs. (8) and (9) the formulas of the
electromagnetic nucleon form factors in the time-like region
[9,24], shown diagrammatically in Fig. 1; such formulas are
given in the appendix, while the proportionality coefficients
of the form factors, S0 and S1, are listed in Table 1 [9].

As regards the transition term, we assume the value (51)
for CA, with the two possible signs. The choice of the − sign
yields

B f (B± → K± p p̄) = (2.96 ± 0.27) · 10−6, (52)
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Table 1 Parameters of the theoretical function. F1 refers to factoriza-
tion, F2 shows the results of the best fit. CA and CV 5 are expressed in
GeV5, CP in GeV8, S0 and S1 in GeV

Fit CA CV 5 CP S0 S1

F1 −42.1 +2.4
−2.6 – – 0.36 0.36

F2 −66.0+24.8
− 9.1 – – 187.3+ 48.2

−126.9 −1.25+0.05
−0.03

b

ū

ū

s

u

u

d

d̄
ū
ū

ū

b

ū

ū

d̄

d

u

u

ū

s

(a) (b)

Fig. 2 Main diagrams in the decays B± → K± p p̄

which is considerably smaller than the experimental value
(2). The choice of the + sign forCA yields even a lower value.
Also data [2,15] of the differential branching fraction are in
disagreement with the factorization assumption, as shown
by the dashed line in Fig. 3; therefore we conclude that this
assumption is inadequate. The situation is somewhat analo-
gous to the one illustrated in Ref. [26] about the decays of
B to Kχ0, to D(∗)0π0 and to π0π0, which are surprisingly
enhanced with respect to the factorization assumption and
demand both non-factorizing terms and re-scattering effects.

3.2 Remarks on the main contributing graphs

After the result just shown above, a criticism of the assump-
tions made is in order. Therefore we analyze in detail the
main graphs contributing to the decay considered, which we
illustrate in Fig. 2.

Figure 2a, b represent, respectively, the color-allowed and
the penguin diagram. According to the former one, the meson
is by no means correlated to the baryons, since the quark
hadronization to the meson occurs just after the weak (very
short-ranged) interaction; therefore factorization could be of
course assumed for this diagram, which contributes to the
transition term. But as told, in the K decay, this amplitude
is subdominant with respect to the penguin one. This latter
consists of several components contributing to the K and/or
π decay, described and represented in detail in Refs. [27] and
[7]: some of them may be regarded as factorizable, but not
all. The evident failure of factorization leads us to conclude

that non-factorizing diagrams play quite an important role in
the K decay. In particular, we point out a contribution fed
by the quark subprocess b → cc̄s. It may give rise to a p p̄
pair through re-scattering from �c�̄c pair formation, which
can occur either by cc̄ fragmentation, or via intermediate
states like D(∗) D̄(∗)

s , �c�̄c [7]; this causes an anomalously
large enhancement of the decay rate with respect to the naive
factorization [7]. In the π decay, the corresponding amplitude
is suppressed by a factor |Vcd/Vcs| with respect to the K
decay. Since the current term interferes only weakly with
the transition term [9], this process gives a negligibly small
contribution to the differential decay width, as anticipated in
Sect. 3.1. On the contrary, it might explain the prevalent role
of the current term in the K decay, as we shall establish in
Sect. 3.3.

The failure of factorization is also confirmed by the numer-
ical results presented by Chua et al. [9], since the current
contribution depends crucially on the effective number of
colors, Nc (see also Ref. [12]). On the contrary, the fit to the
π decay, dominated by the tree diagram, is stable versus Nc;
this is reflected also on the transition term of the K decay [9],
for which those authors assume the same parametrization as
for π . The fit to B± → π±� p̄, which depends essentially
on a factorizable penguin diagram [27], is also reasonably
stable versus Nc.

Aside from that, as stated before, the long-range FSI might
be not so negligible, somewhat analogously to the case of B
decays to mesons [26], although on a smaller scale. This may
contribute to the failure of factorization and may give rise to
further effects, to be discussed in Sect. 4.

3.3 An alternative parametrization

All of the above considerations suggest to relax the factor-
ization assumption. Indeed, we have to take into account
both non-factorizable terms and FSI; the latter are typically
non-perturbative and therefore cannot be deduced from QCD
principles. To this end, we regard CA, CV 5, CP , S0, and S1

as free parameters, which we determine by minimizing the
χ2 in a fit to the data, that is, as stated before, the differential
branching fraction [2,15] and the asymmetries AFB and ACP

[2]. In order to avoid strong correlations between the various
parameters, we set CV 5 = CP = 0, like Chua et al. [9]. The
parameters of the fit are shown in Table 1, where they are
compared to those of factorization. Furthermore the fit to the
mpp̄ distribution is exhibited in Fig. 3, continuous line.

3.4 Results and model predictions

Table 2 shows the experimental values of the branching frac-
tion and of the CP and FB asymmetries and the theoretical
results about such quantities, both according to the factoriza-
tion assumption and to our best fit. Furthermore, Figs. 4 and
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Fig. 3 B± → K± p p̄ decay: differential branching fraction vs mpp̄ ,
charge averaged case. LHCb and Belle data are represented, respec-
tively, by rhombuses and triangles. The continuous (dashed) line refers
to the best fit (factorization assumption)

Table 2 Branching fraction and CP and FB asymmetries: experimental
data (Ex) are compared to results of the factorization assumption (F1)
and of our fit (F2). B f is multiplied by 106, ACP and AFB by 102. Here
the experimental errors of the asymmetries are summed quadratically
(see Eqs. (3) and (4))

Fit B f ACP AFB

Ex 5.9 ± 0.5 −2.2 ± 3.2 37.0 ± 2.4

F1 2.96 ± 0.27 8.0 +0.24
−0.29 7.6 ± 0.1

F2 6.21 +2.40
−0.49 11.7 +9.5

−7.1 11.4+0.1
−1.5

5 represent, respectively, the differential branching fractions
of the K+ and K− decays separately and the differential CP
asymmetry, ACP, Eq. (49), which could be measured in the
future.

Two comments are in order about the results given in
Tables 1 and 2. First of all, the parameters CA and S0, as
determined by our best fit (see line F2 of Table 1), are affected
by large, asymmetric errors; however, while the value of CA

is compatible with factorization (compare with line F1), S0 is
much greater, which suggests that the current term derives a
large contribution from the effects described in Sect. 3.2. As
regards Table 2, the theoretical value of ACP is affected by a
large error, while the one of AFB is quite small. This is con-
nected to the experimental errors and to the definition itself
of these asymmetries. ACP is proportional to the difference
between two large and almost equal quantities and is known
experimentally with a relative error of 141 %; therefore, its
dependence on the fit parameters is quite mild.The opposite
happens for AFB, whose experimental value is not so close
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Fig. 4 Differential branching fractions vs mpp̄ for B± → K± p p̄
decays separately: the continuous (dashed) line refers to the B± decay
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to the theoretical one and is affected by a quite small relative
error [2].

4 Discussion and conclusions

Here we comment on our main results.

(a) As regards the current contribution, we have adopted
the parametrization suggested by the pole model [24],
like Ref. [9]. As already observed in Sect. 3.4, by com-
paring the lines L1 and L2 of Table 1, we conclude that,
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according to our fit, the current term is much greater than
expected from factorization. Moreover, we see from line
F2 that |S0| >> |S1|, therefore the term corresponding
to the angular momentum J = 0 prevails neatly over the
one with J = 1, in agreement with the low-mass charac-
ter of the p p̄ peak. However, the term with J = 1 gives
an essential contribution to the fit to the Dalitz plot dis-
tribution, as expected from C and P violation in weak
decays [22].

(b) The FB asymmetry (AFB) – confirmed by the Dalitz plot
distribution [2,17] – is caused by the linear terms in cos
θp, which appear in the differential decay width (38),
precisely,

– in the Jacobian (36), owing to the Lorentz boost from
the p p̄ frame to the B rest frame;

– in the interference term between the pseudoscalar and
the vector amplitude, whose coefficient is �13, Eq.
(31).

In our model – for which, incidentally, the second cause
of asymmetry shown above is ruled out, owing to the
absence of the pseudoscalar amplitude – AFB is positive
for the K decay, not only as a result of our fit, but also
according to the factorization assumption, as shown in
Table 2. In this connection, it is worth observing that,
in the model proposed, the sign of AFB is not a pri-
ori determined; it depends on the moduli and phases
of the amplitudes involved in the decay, according to
the β coefficients (20) to (23). Furthermore, this is not
typical of the K decay. Indeed, also in the case of π

decay, the parametrization by Ref. [9] yields a posi-
tive AFB, whereas experiments find a negative value
[2,15,17]. Therefore, our picture seems to contradict the
pole model conclusions and naive quark model expec-
tations [7]. Rather, as observed in Sect. 3.1, the negative
FB asymmetry of the π decay could be explained by
means of the color-suppressed tree diagram.

(c) In the K decay, the gap between the experimental value
of AFB and the result of our fit (see Table 2) could be
filled by the first term of Eq. (22), concerning the electric
form factor of the proton, neglected also in Ref. [9],
which is linear in cos θp. This explanation of the large
asymmetry could be alternative to the one proposed by
other authors [11].

(d) Lastly, the CP asymmetry (ACP) is found to be positive
according to our parametrization, which does not differ
so much from the prediction of the factorization assump-
tion (see also Ref. [11]); on the contrary, experiments
seem to indicate a negative value, although compatible
with a positive asymmetry within errors. Therefore, if a
more accurate determination of this observable could be
desirable, also a deeper analysis of the model is needed.
Indeed, although less important than in meson B decays,

the FSI could produce a relative phase between the cur-
rent term and the transition amplitude, so as to change
the sign of ACP [26,28]. In other words, the difference
of sign between data and model predictions does not
necessarily imply new physics.
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Appendix

Here we give the numerical values of the CKM matrix ele-
ments and of the Wilson coefficients involved in the decays
considered, as well as the expressions of the matrix elements
that appear in the expressions of the current and of the tran-
sition terms, according to Refs. [9,23].

CKM matrix elements

We give the CKM matrix elements [23] which enter the
expressions of the decay amplitudes for B− → K−(π−)p p̄:

Vub = Aλ3(ρ − iη), Vtb = 1, V ∗
us = λ, (A. 1)

V ∗
ts = −Aλ2, V ∗

ud = 1 − 1

2
λ2,

V ∗
td = Aλ3(1 − ρ + iη), (A. 2)

with A = 0.814, λ = 0.226, ρ = 0.117 and η = 0.353. For
the CP-conjugated decays one has to take the complex con-
jugated elements.

Wilson coefficients

For the B± → K± p p̄ decay, we have [9]

a1 = 1.05, a2 = 0.02, a3 = (72.7 − 0.3i) · 10−4,

a4 = −(3.873 + 1.21i) · 10−2, a5 = −(66 + 0.3i) · 10−4,

a6 = −(5.553 + 1.21i) · 10−2, a9 = −(92.6 + 2.7i) · 10−4.

(A. 3)

As for the B± → π± p p̄ decay, the coefficients read

a1 = 1.05, a2 = 0.02, a3 = (73 + 0.3i) · 10−4,

a4 = −(3.757 + 1.083i) · 10−2, a5 = (−66 + 0.3i) · 10−4,

a6 = −(5.447 + 1.083i) · 10−2, a9 = −(92.4 + 2.5i) · 10−4.

(A. 4)
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Non-perturbative matrix elements

(A) The matrix element 〈K−|Lμ
sb|B−〉, which appears in the

current term (8), reads [9]

〈K−|Lμ
sb|B−〉 = kμr F0 + lμF1, (A. 5)

with

k = pp + pp̄, l = 2pB − (1 + r)k, r = m2
B − m2

K

k2

(A. 6)

and

F0 = S0

1 − u1τ + u2τ 2 , F1 = S1

(1 − τ)(1 − wτ)
,

τ = t

m2
V

. (A. 7)

In order to get the expression of 〈π−|Lμ
sb|B−〉, we have

to replace mK by mπ in r . Moreover, the numerical values
of the parameters which appear in Eq. (A. 7) are

mV = 5.42 (5.32) GeV, u1 = 0.70 (0.76),

u2 = 0.27 (0.28), w = 0.43 (0.48), (A. 8)

the values outside (inside) parentheses referring to the K (π)

decay. Lastly, S0 and S1, which have the dimension of an
energy, are treated as free parameters and determined accord-
ing to the two possible choices described in the text; see Table
1.

(B) Now we give the expressions of other matrix elements
involved in the current terms in K decay [9]:

〈K |L̃sb|B〉 = m2
B − m2

K

mb − ms
F0, (A. 9)

〈p p̄|Li
μ|0〉 = ū(pp)

[
�iγμ + �̂i δμ

2mp

−
(
giAγμγ5 + γ5

hiA
2mp

kμ

)]
v(pp̄), (A. 10)

〈p p̄|Rμ|0〉 = ū(pp)

[
�2γμ + �̂2 δμ

2mp

−
(
g2
Aγμγ5 + γ5

h2
A

2mp
kμ

)]
v(pp̄), (A. 11)

〈p p̄|R̃ss |0〉 =
(
mp

ms
g3
A + k2

4mpms
h3
A

)
ū(pp)γ5v(pp̄).

(A. 12)

Here the first and last formulas are deduced from the equa-
tions of motion; in particular, the first one exploits also Eq.
(A. 5), contracted with kμ, and the relation k ·l = 0. Moreover

δ = pp̄ − pp, (A. 13)

�1 = Gp
M − Gn

M + SV , �2 = 3(SV − Gn
M ),

�3 = SV − Gp
M − 2Gn

M , �4 = Gp
M , (A. 14)

Gp
M = λ(t)

5∑
n=1

xn
tn+1 , Gn

M = −λ(t)
2∑

n=1

yn
tn+1 ,

SV = −λ(t)
y3

t2 , (A. 15)

λ(t) = [ln(t/�2
0)]γ , �0 = 0.3 GeV, γ = −2.148,

(A. 16)

x1 = 420.96 GeV4, x2 = −10485.50 GeV6,

x3 = 106390.97 GeV8, x4 = −433916.61 GeV10,

(A. 17)

x5 = 613780.15 GeV12, (A. 18)

y1 = 236.69 GeV4 y2 = −579.51 GeV6,

y3 = −52.42 GeV4 (A. 19)

and

g1
A = f A + dA + sA, g2

A = 2dA + 3sA,

g3
A = − f A + dA + sA, g4

A = f A + 1/3dA, (A. 20)

f A = λ(t)
2∑

n=1

wn

tn+1 , dA = λ(t)
2∑

n=1

zn
tn+1 ,

sA = λ(t)
z3

t2 , (A. 21)

w1 = 399 GeV4, w2 = −1055 GeV6, (A. 22)

z1 = 65.93 GeV4, z2 = −1055 GeV6,

z3 = 333.06 GeV4. (A. 23)

Lastly, we have set

�̂i = 0 and hiA = −4m2
p

t − mπ0

giA, i = 1 to 4. (A. 24)

The corresponding expressions for the π decay are obtained
by replacing mK by mπ , ms by md , �3 by SV , and g3

A by sA.
(C) The matrix elements involved in the transition term

(10) are [9]

〈K |L̃us |0〉〈p p̄|Sub|0〉 = − fKmb[FAū(pp)p/K γ5v(pp̄)

+ FPū(pp)γ5v(pp̄)], (A. 25)

〈K |L̃us |0〉〈p p̄|Pub|0〉 = − fKmb[FV5ū(pp)p/K v(pp̄)

+ FPū(pp)v(pp̄)]. (A. 26)
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Here fK = 0.158 GeV and

FA = CA

t3 , FV 5 = CV 5

t3 , FP = CP

t4 , (A. 27)

CA, CV 5, and CP being assumed, again, as free parameters
and determined as described in the text.

In the case of the π decay, one has to replace fK by fπ =
0.133 GeV.

References

1. I.I. Bigi and A.I. Sanda: ”CP Violation”, Second Edition, Cam-
bridge University Press, Cambridge CB2 8R, UK, May 2009

2. R. Aaij et al., LHCb Coll. Phys. Rev. D 88, 052015 (2013)
3. R. Aaij et al., LHCb Coll. Phys. Rev. Lett. 111, 101801 (2013)
4. R. Aaij et al., LHCb Coll. Phys. Rev. Lett. 113, 141801 (2014)
5. H. Albrecht et al., ARGUS Coll. Phys. Lett. B 209, 119 (1988)
6. C. Bebek et al., CLEO Coll. Phys. Rev. Lett. 62, 2436 (1989)
7. H.-Y. Cheng, Int. Jou. Mod. Phys. A 21, 4209 (2006)
8. W.-S. Hou, A. Soni, Phys. Rev. Lett. 86, 4247 (2001)

9. C.-K. Chua, W.-S. Hou, S.-Y. Tsai, Phys. Rev. D 66, 054004 (2002)
10. J. Rosner, Phys. Rev. D 68, 014004 (2003)
11. C.Q. Geng, Y.K. Hsiao, Phys. Rev. D 74, 094023 (2006)
12. C.Q. Geng, Y.K. Hsiao, J.N. Ng, Phys. Rev. Lett. 98, 011810 (2007)
13. A. Bornheim et al., CLEO Coll. Phys. Rev. D 68, 052002 (2003)
14. M.C. Chang et al., Belle Coll. Phys. Rev. D 71, 072007 (2005)
15. J. T. Wei et al., Belle Coll.: Phys Lett. B 659, 80 (2008)
16. B. Aubert et al., BaBar Coll. Phys. Rev. D 69, 091503 (2004)
17. B. Aubert et al., BaBar Coll. Phys. Rev. D 72, 051101 (2005)
18. T. Latham: DPF 2013 - The Meeting of the APS - Division of

Particles and Fields, Santa Cruz, California, August 13-17, 2013
19. R. Marshak, Riazuddin and C, Theory of Weak Interactions in Par-

ticle Physics (Wiley-Interscience, New York, NY, 1969)
20. L. Wolfenstein, Phys. Rev. D 43, 151 (1991)
21. Z.J. Ajaltouni, E. Di Salvo, Int. Jou. Mod. Phys. E 22, 1330006

(2013)
22. J. Haidenbauer et al., Phys. Rev. D 74, 017501 (2006)
23. K.A. Olive et al., Particle Data Group. Chin. Phys. C 38, 090001

(2014)
24. D. Melikhov, B. Stech, Phys. Rev. D 62, 014006 (2000)
25. K. Abe et al., Belle Coll. Phys. Rev. Lett. 88, 181803 (2002)
26. H.-Y. Cheng, C.-K. Chua, A. Soni, Phys. Rev. D 71, 014030 (2005)
27. H.-Y. Cheng, K.-C. Yang, Phys. Rev. D 66, 014020 (2002)
28. H.-Y. Cheng, C.-K. Chua, A. Soni, Phys. Rev. D 72, 014006 (2005)

123


	Phenomenological analysis of the decay BpmtoKpm p barp
	Abstract 
	1 Introduction
	2 Observables and theoretical function
	2.1 Observables
	2.2 Theoretical function
	2.2.1 Matrix element of the decay
	2.2.2 Calculations of observables


	3 Phenomenological analysis
	3.1 Factorization assumption
	3.2 Remarks on the main contributing graphs
	3.3 An alternative parametrization
	3.4 Results and model predictions

	4 Discussion and conclusions
	Acknowledgments
	Appendix
	CKM matrix elements
	Wilson coefficients
	Non-perturbative matrix elements

	References




