106 research outputs found
On a stochastic partial differential equation with non-local diffusion
In this paper, we prove existence, uniqueness and regularity for a class of
stochastic partial differential equations with a fractional Laplacian driven by
a space-time white noise in dimension one. The equation we consider may also
include a reaction term
Expression and Characterization of the Naturally Occurring Mutation L394R in Human γ-Glutamyl Carboxylase
Patients with mutation L394R in gamma-glutamyl carboxylase have a severe bleeding disorder because of decreased biological activities of all vitamin K-dependent coagulation proteins. Vitamin K administration partially corrects this deficiency. To characterize L394R, we purified recombinant mutant L394R and wild-type carboxylase expressed in baculovirus-infected insect cells. By kinetic studies, we analyzed the catalytic activity of mutant L394R and its binding to factor IX's propeptide and vitamin KH(2). Mutant L394R differs from its wild-type counterpart as follows: 1) 110-fold higher K(i) for Boc-mEEV, an active site-specific, competitive inhibitor of FLEEL; 2) 30-fold lower V(max)/K(m) toward the substrate FLEEL in the presence of the propeptide; 3) severely reduced activity toward FLEEL carboxylation in the absence of the propeptide; 4) 7-fold decreased affinity for the propeptide; 5) 9-fold higher K(m) for FIXproGla, a substrate containing the propeptide and the Gla domain of human factor IX; and 6) 5-fold higher K(m) for vitamin KH(2). The primary defect in mutant L394R appears to be in its glutamate-binding site. To a lesser degree, the propeptide and KH(2) binding properties are altered in the L394R mutant. Compared with its wild-type counterpart, the L394R mutant shows an augmented activation of FLEEL carboxylation by the propeptide
Glycine Inhibitory Dysfunction Turns Touch into Pain through PKCgamma Interneurons
Dynamic mechanical allodynia is a widespread and intractable symptom of neuropathic pain for which there is a lack of effective therapy. During tactile allodynia, activation of the sensory fibers which normally detect touch elicits pain. Here we provide a new behavioral investigation into the dynamic component of tactile allodynia that developed in rats after segmental removal of glycine inhibition. Using in vivo electrophysiological recordings, we show that in this condition innocuous mechanical stimuli could activate superficial dorsal horn nociceptive specific neurons. These neurons do not normally respond to touch. We anatomically show that the activation was mediated through a local circuit involving neurons expressing the gamma isoform of protein kinase C (PKCγ). Selective inhibition of PKCγ as well as selective blockade of glutamate NMDA receptors in the superficial dorsal horn prevented both activation of the circuit and allodynia. Thus, our data demonstrates that a normally inactive circuit in the dorsal horn can be recruited to convert touch into pain. It also provides evidence that glycine inhibitory dysfunction gates tactile input to nociceptive specific neurons through PKCγ-dependent activation of a local, excitatory, NMDA receptor-dependent, circuit. As a consequence of these findings, we suggest that pharmacological inhibition of PKCγ might provide a new tool for alleviating allodynia in the clinical setting
Metformin:historical overview
Metformin (dimethylbiguanide) has become the preferred first-line oral blood glucose-lowering agent to manage type 2 diabetes. Its history is linked to Galega officinalis (also known as goat's rue), a traditional herbal medicine in Europe, found to be rich in guanidine, which, in 1918, was shown to lower blood glucose. Guanidine derivatives, including metformin, were synthesised and some (not metformin) were used to treat diabetes in the 1920s and 1930s but were discontinued due to toxicity and the increased availability of insulin. Metformin was rediscovered in the search for antimalarial agents in the 1940s and, during clinical tests, proved useful to treat influenza when it sometimes lowered blood glucose. This property was pursued by the French physician Jean Sterne, who first reported the use of metformin to treat diabetes in 1957. However, metformin received limited attention as it was less potent than other glucose-lowering biguanides (phenformin and buformin), which were generally discontinued in the late 1970s due to high risk of lactic acidosis. Metformin's future was precarious, its reputation tarnished by association with other biguanides despite evident differences. The ability of metformin to counter insulin resistance and address adult-onset hyperglycaemia without weight gain or increased risk of hypoglycaemia gradually gathered credence in Europe, and after intensive scrutiny metformin was introduced into the USA in 1995. Long-term cardiovascular benefits of metformin were identified by the UK Prospective Diabetes Study (UKPDS) in 1998, providing a new rationale to adopt metformin as initial therapy to manage hyperglycaemia in type 2 diabetes. Sixty years after its introduction in diabetes treatment, metformin has become the most prescribed glucose-lowering medicine worldwide with the potential for further therapeutic applications
Twenty-six years of HIV science: an overview of anti-HIV drugs metabolism
From the identification of HIV as the agent causing AIDS, to the development of effective antiretroviral drugs, the scientific achievements in HIV research over the past twenty-six years have been formidable. Currently, there are twenty-five anti-HIV compounds which have been formally approved for clinical use in the treatment of AIDS. These compounds fall into six categories: nucleoside reverse transcriptase inhibitors (NRTIs), nucleotide reverse transcriptase inhibitors (NtRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), cell entry inhibitors or fusion inhibitors (FIs), co-receptor inhibitors (CRIs), and integrase inhibitors (INIs). Metabolism by the host organism is one of the most important determinants of the pharmacokinetic profile of a drug. Formation of active or toxic metabolites will also have an impact on the pharmacological and toxicological outcomes. Therefore, it is widely recognized that metabolism studies of a new chemical entity need to be addressed early in the drug discovery process. This paper describes an overview of the metabolism of currently available anti-HIV drugs.Da identificação do HIV como o agente causador da AIDS, ao desenvolvimento de fármacos antirretrovirais eficazes, os avanços científicos na pesquisa sobre o HIV nos últimos vinte e seis anos foram marcantes. Atualmente, existem vinte e cinco fármacos anti-HIV formalmente aprovados pelo FDA para utilização clínica no tratamento da AIDS. Estes compostos são divididos em seis classes: inibidores nucleosídeos de transcriptase reversa (INTR), inibidores nucleotídeos de transcriptase reversa (INtTR), inibidores não-nucleosídeos de transcriptase reversa (INNTR), inibidores de protease (IP), inibidores da entrada celular ou inibidores de fusão (IF), inibidores de co-receptores (ICR) e inibidores de integrase (INI). O metabolismo consiste em um dos maiores determinantes do perfil farmacocinético de um fármaco. A formação de metabólitos ativos ou tóxicos terá impacto nas respostas farmacológicas ou toxicológicas do fármaco. Portanto, é amplamente reconhecido que estudos do metabolismo de uma nova entidade química devem ser realizados durante as fases iniciais do processo de desenvolvimento de fármacos. Este artigo descreve uma abordagem do metabolismo dos fármacos anti-HIV atualmente disponíveis na terapêutica
Microbiologically-assisted hemisynthesis of 1a-hydroxydrimenol
International audienceThe hemisynthesis of 1a-hydroxydrimenol has been selected to illustrate a synthetic route involving an initial microbial 3ß-hydroxylation of a drimenol derivative followed by a functionalization transfer to position 1a, thus generating a new potentially bioactive hydroxylated terpenic compound. Several methods have been investigated for the protection and the regeneration of the 7,8-double bond of drimenyl derivatives. © 2001 Elsevier Science Ltd. All rights reserved
Vitamin K-dependent carboxylase. In vitro inhibitory activity of cyclopentane and cyclohexane-derived analogues of glutamic acid and their conformational study by NMR and molecular dynamics in aqueous solution.
International audienceThe conformational analysis of four glutamic acid analogues containing a cyclopentyl or cyclohexyl ring, substituted in position 1 by a Boc-protected amino group and a methyl ester group and in position 3 by a free carboxylate group (6-9), has been carried out in an aqueous environment, by 1H and 13C NMR spectroscopy, and molecular dynamics (MD). These compounds have been shown to be weak competitive inhibitors (Ki approximately 20-65 mM) of the vitamin K-dependent carboxylation of Boc-Glu-OMe in rat liver microsomes independently of their ring size and stereochemical features. However, the cyclic trans isomers have been found more active than the cis ones, and Boc-trans-C5-OMe (9) is the most potent inhibitor in the series (cis and trans isomers are defined by the relative arrangement of the carboxyl functions). Such cyclic glutamyl derivatives may provide valuable informations on the preferred bioactive conformations of synthetic glutamyl substrates at the active site of the carboxylase. In aqueous solution, the Boc-cis- and trans-C6 esters exhibit chair conformations with exclusively equatorial and axial substituent positions, while the Boc-cis- and -trans-C5 compounds may display envelope E or 'twist' T conformations with the substituents in the following positions, equatorial; axial and isoclinal. For each compound, the conformations resulting from NMR and MD data were analyzed and classified according to the dihedral angles chi 1 and chi 2, the distances of functional groups, and the spatial charge distribution involving the free carboxyl group. A reduced number of conformational families were found to be in qualitative agreement with NMR and MD data. These results are discussed in relation with the carboxylase inhibitory activity of the analogues, and a spatial disposition of the glutamyl side chain that could be recognized by the carboxylase is deduced
- …