138 research outputs found

    Bringing Packed Red Blood Cells to the Point of Combat Injury: Are We There Yet?

    Get PDF
    INTRODUCTION: Hemorrhage is the leading cause of injury related pre-hospital mortality. We investigated worst case scenarios and possible requirements of Turkish Military. As we plan to use blood resources during casualty transport, the impact of transport related mechanical stress on PRBC (packed red blood cell) were analyzed. MATERIAL AND METHODS: The in vitro experiment was performed in the environmental test laboratories of ASELSAN(R). Operational vibrations of potential casualty transport mediums such as Sikorsky Helicopters, Kirpi(R) Armoured Vehicle and NATO vibration standardsoftware MIL-STD-810G were recorded. The most powerful mechanical stress, which was created by the NATO standard, was applied to 15 units of fresh (7 day) PRBC in a blood cooler box. The vibrations were simulated by TDS v895 Medium-Force Shaker Device. On site blood samples were analyzed at 0, 6th and 24th hours for biochemical and biomechanical analyses. RESULTS: The mean age of fresh and old PRBCs was 4.9 (SD +/- 2.2) and 32.8 (SD +/- 11.8) days, respectively. Six-hour mechanical damage of fresh PRBC was demonstrated by increased erythrocyte fragmentation rates (p=0.015), hemolysis rates (p=0.003), supernatant potassium levels (p=0.003) and decreased hematocrit levels (p=0.015). Old PRBC hemolysis rates (p=0.015), supernatant potassium levels (p=0.015), supernatant Hb (p=0.015) were increased and Htc levels were decreased (p=0.015) within 6 hours. Two (%13) units of fresh and none of the old PRBC were eligible for transfusion after 6 hours of mechanical stress. CONCLUSION: When the austere combat environment was simulated for 24 hours, fresh and old PRBC hemolysis rates were above the quality criteria. Currently, a technology to overcome this mechanical damage does not seem to exist. In the light of the above data, a new national project is being performed

    Plasma Chemerin Levels Are Increased in ST Elevation Myocardial Infarction Patients with High Thrombus Burden

    Get PDF
    Objective. To investigate plasma chemerin levels in ST elevation myocardial infarction (STEMI) patients and find out possible relationships between plasma chemerin levels and angiographic characteristics. Patients and Methods. Ninety-seven consecutive patients who presented with STEMI and underwent primary percutaneous coronary intervention (PCI) with coronary stents were enrolled, and 30 age- and sex-matched patients with stable angina pectoris who underwent coronary angiography formed the control group. Angiographic characteristics of the patients including thrombolysis in myocardial infarction (TIMI) thrombus and Gensini scores were noted. Blood samples were taken to detect several biochemical markers including plasma chemerin levels at the admission to hospital. Results. Serum chemerin and C-reactive protein (CRP) levels were significantly increased in patients with STEMI. Among STEMI patients, serum chemerin levels were significantly higher in patients with high thrombus burden (581.5 ± 173.7 versus 451.3 ± 101.2 mg/dL, p<0.001). CRP levels and peak creatine kinase-MB (CK-MB) levels were higher, and left ventricular ejection fraction and post-PCI TIMI flow were lower in patients with high thrombus burden. After multivariate analysis, serum chemerin levels were also higher in patients with high thrombus grade (odds ratio: 1.009 (1.005–1.014), p<0.001). Besides, serum chemerin levels were also found to be significantly correlated with CRP r=0.47,p<0.001 and peak CK-MB r=0.376,p<0.001 levels. Conclusions. Results from our study have demonstrated for the first time that chemerin levels were higher in STEMI patients with greater thrombus burden and higher level of inflammation

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men
    corecore