40 research outputs found

    Neuronal Cholesterol Accumulation Induced by Cyp46a1 Down-Regulation in Mouse Hippocampus Disrupts Brain Lipid Homeostasis

    Get PDF
    Impairment in cholesterol metabolism is associated with many neurodegenerative disorders including Alzheimer's disease (AD). However, the lipid alterations underlying neurodegeneration and the connection between altered cholesterol levels and AD remains not fully understood. We recently showed that cholesterol accumulation in hippocampal neurons, induced by silencing Cyp46a1 gene expression, leads to neurodegeneration with a progressive neuronal loss associated with AD-like phenotype in wild-type mice. We used a targeted and non-targeted lipidomics approach by liquid chromatography coupled to high-resolution mass spectrometry to further characterize lipid modifications associated to neurodegeneration and cholesterol accumulation induced by CYP46A1 inhibition. Hippocampus lipidome of normal mice was profiled 4 weeks after cholesterol accumulation due to Cyp46a1 gene expression down-regulation at the onset of neurodegeneration. We showed that major membrane lipids, sphingolipids and specific enzymes involved in phosphatidylcholine and sphingolipid metabolism, were rapidly increased in the hippocampus of AAV-shCYP46A1 injected mice. This lipid accumulation was associated with alterations in the lysosomal cargoe, accumulation of phagolysosomes and impairment of endosome-lysosome trafficking. Altogether, we demonstrated that inhibition of cholesterol 24-hydroxylase, key enzyme of cholesterol metabolism leads to a complex dysregulation of lipid homeostasis. Our results contribute to dissect the potential role of lipids in severe neurodegenerative diseases like AD

    Shotgun lipidomics and mass spectrometry imaging unveil diversity and dynamics in Gammarus fossarum lipid composition

    Get PDF
    Sentinel species are playing an indispensable role in monitoring environmental pollution in aquatic ecosystems. Many pollutants found in water prove to be endocrine disrupting chemicals that could cause disruptions in lipid homeostasis in aquatic species. A comprehensive profiling of the lipidome of these species is thus an essential step toward understanding the mechanism of toxicity induced by pollutants. Both the composition and spatial distribution of lipids in freshwater crustacean Gammarus fossarum were extensively examined herein. The baseline lipidome of gammarids of different sex and reproductive stages was established by high throughput shotgun lipidomics. Spatial lipid mapping by high resolution mass spectrometry imaging led to the discovery of sulfate-based lipids in hepato-pancreas and their accumulation in mature oocytes. A diverse and dynamic lipid composition in G. fossarum was uncovered, which deepens our understanding of the biochemical changes during development and which could serve as a reference for future ecotoxicological studies.Approches Protéomique et Lipidomique pour la compréhension des mécanismes moléculaires de toxicité en lien avec l'altération du métabolisme lipidique chez l'espÚce sentinelle Gammarus fossarum durant le cycle de reproductio

    Traitement des données brutes de la spectrométrie de masse - infusion directe. Application à la lipidomique

    No full text
    Institut de Chimie CNRS action convergenceNational audienc

    Characterization of lysolipid acyltransferases in S. cerevisiae - Contribution of Mass Spectrometry

    No full text
    En plus de leurs propriĂ©tĂ©s structurales comme constituants majeurs des membranes biologiques des cellules, les lipides jouent de nombreux rĂŽles dans la signalisation cellulaire, le stockage d’énergie et le transport de protĂ©ines. Leurs importances biologiques ont menĂ© Ă  une augmentation accrue des mĂ©thodes analytiques pour la caractĂ©risation d’espĂšces molĂ©culaires uniques. De rĂ©cents progrĂšs en spectromĂ©trie de masse ont amenĂ© Ă  la caractĂ©risation et Ă  la quantification des espĂšces molĂ©culaires des lipides dans des extraits lipidiques bruts (Han and Gross, 2005; Murphy et al., 2001). Par exemple, les espĂšces molĂ©culaires de phospholipides peuvent ĂȘtre identifiĂ©es spĂ©cifiquement par leur tĂȘte polaire, la nature de leurs chaĂźnes d’acide gras et leur positionnement au niveau du squelette glycĂ©rol.In addition to their structural properties as main constituents of biological membranes, lipids play a multitude of roles such as in cell signalling, energy storage, and protein transport. Their biological importance has led to an increasing focus on analytical methods for the characterisation of their individual molecular species. Improvements in mass spectrometric technology has provided a great advantage for the characterisation and quantification of molecular lipid species in total lipid extracts (Han and Gross, 2005; Murphy et al., 2001). For instance, phospholipid molecular species can be identified on the basis of a characteristic fragment of the lipid class, the nature of the acyl chains and their positions on the glycerol backbone.A method allowing the quantitative profiling of the yeast lipidome was developed in a recent study using automated shotgun infusion strategy (Ejsing et al., 2009). We applied this method to characterise several lysophospholipid acyltransferase yeast mutants produced using reverse-genetics. These enzymes are involved in essential biological processes like de novo synthesis or remodelling of the phospholipid membrane component (Testet et al., 2005; Le Guedard et al., 2009). The comparative analysis of phospholipid molecular species from the wild-type strain and the corresponding deletion mutants has allowed us to identify lipid compositional changes, and has given us significant indications about the in vivo function of the encoded lysophospholipid acyltransferases

    Caractérisation de lysolipide acyltransférases chez S. cerevisiae. Apport de la Spectrométrie de Masse.

    No full text
    Cell membranes, enveloping either cells or organelles, are fundamental structural elements in all kingdoms of life. Biological membranes are made of proteins inserted in a lipidic bilayer composed of phospholipids, sterols and sphingolipids. In addition to their role as a hydrophobic and semi-permeable barrier, they are involved in many physiological processes such as cell signalling, energy storage and membrane transport. Indeed, cell membranes allow a tight regulation of energy, information, nutrients and metabolites flows. The importance of membrane structures is such that the cell is obliged to ensure quantitatively and qualitatively their integrity, diversity and specificity. However, the cellular mechanisms that control this membrane homeostasis remain poorly understood. To better understand this phenomenon, it is important to focus on the modalities of membrane lipid supply and the phenomena involved in their remodeling. It is in this context that the Membrane Biogenesis laboratory has been interested in the study and characterization of enzymes involved in lipid metabolism, namely lysophospholipid acyltransferases. These enzymes are able to acylate a lysophospholipid (a phospholipid with a single fatty acid chain generally positioned in the sn-1 position of the glycerol skeleton), and thus allow the synthesis of a phospholipid sensu stricto (i.e. with two fatty acid chains). These enzymes could play an important role in the construction of membranes, the transfer of lipids between two subcellular compartments and the "remodeling" of membrane lipids. Because of the central role of lipids in physiological and pathological processes, their study has required the development of specific and sensitive analytical methods for the characterization of single molecular species. For more than two decades, advances in mass spectrometry have enabled the characterization and absolute quantification of lipid molecular species from crude lipid extracts from complex biological matrices (Han & Gross, 2005; Wenk, 2005). Indeed, the classes of phospholipids can be specifically identified by their polar head and the molecular species by the nature and positioning of the fatty acid chains at the glycerol backbone. Mass spectrometry is therefore the technique of choice to describe this molecular diversity in detail.Les membranes cellulaires, enveloppant soit les cellules soit les organelles, sont des Ă©lĂ©ments structurels fondamentaux dans tous les rĂšgnes de la vie. Les membranes biologiques sont constituées de protéines insérées dans une bicouche lipidique composĂ©e de phospholipides, de stérols et de sphingolipides. En plus de leur rĂŽle de barriĂšre hydrophobe et semi-perméable, elles sont impliquées dans de très nombreux processus physiologiques comme la signalisation cellulaire, le stockage d’énergie et le transport membranaire. En effet, les membranes cellulaires permettent une rĂ©gulation Ă©troite des flux d'Ă©nergie, d'informations, de nutriments et de mĂ©tabolites. L’importance des structures membranaires est telle que la cellule est contrainte d’assurer quantitativement et qualitativement leur intégrité, leur diversité et leur spécificité. Cependant, les mécanismes cellulaires assurant le contrôle de cette homéostasie membranaire restent encore peu connus. Pour mieux comprendre ce phénomène, il est important de s’intéresser aux modalités d’approvisionnement des membranes en lipides et aux phénomènes impliqués dans leurs remodelages. C’est dans ce contexte que le laboratoire de Biogenèse Membranaire s’est intéressé à l’étude et la caractérisation d’enzymes impliquées dans le métabolisme des lipides, Ă  savoir les lysophospholipides acyltransférases. Ces enzymes sont capables d’acyler un lysophospholipide (phospholipide comportant une seule chaîne d’acide gras positionnée généralement en position sn-1 du squelette glycérol), et de permettre ainsi la synthèse d’un phospholipide sensu stricto (c’est-Ă -dire avec deux chaĂźnes d’acides gras). Ces enzymes pourraient jouer un rôle important dans l’édification des membranes, le transfert de lipides entre deux compartiments subcellulaires et le « remodelage » des lipides membranaires. En raison du rôle central des lipides dans les processus physiologiques et pathologiques, leur étude a nĂ©cessitĂ© le développement de méthodes analytiques spĂ©cifiques et sensibles pour la caractérisation d’espèces moléculaires uniques. Depuis plus d'une vingtaine d’annĂ©es, les progrès en spectrométrie de masse ont permis la caractérisation et la quantification absolue des espèces moléculaires des lipides à partir d'extraits lipidiques bruts issus de matrices biologiques complexes (Han & Gross, 2005; Wenk, 2005). En effet, les classes de phospholipides peuvent être identifiées spécifiquement par leur tête polaire et les espèces moléculaires par la nature et le positionnement des chaînes d'acides gras au niveau du squelette glycérol. La spectrométrie de masse se révèle donc être la technique de choix pour dĂ©crire finement cette diversité moléculaire

    Characterization of lysolipid acyltransferases in S. cerevisiae - Contribution of Mass Spectrometry

    No full text
    En plus de leurs propriĂ©tĂ©s structurales comme constituants majeurs des membranes biologiques des cellules, les lipides jouent de nombreux rĂŽles dans la signalisation cellulaire, le stockage d’énergie et le transport de protĂ©ines. Leurs importances biologiques ont menĂ© Ă  une augmentation accrue des mĂ©thodes analytiques pour la caractĂ©risation d’espĂšces molĂ©culaires uniques. De rĂ©cents progrĂšs en spectromĂ©trie de masse ont amenĂ© Ă  la caractĂ©risation et Ă  la quantification des espĂšces molĂ©culaires des lipides dans des extraits lipidiques bruts (Han and Gross, 2005; Murphy et al., 2001). Par exemple, les espĂšces molĂ©culaires de phospholipides peuvent ĂȘtre identifiĂ©es spĂ©cifiquement par leur tĂȘte polaire, la nature de leurs chaĂźnes d’acide gras et leur positionnement au niveau du squelette glycĂ©rol.In addition to their structural properties as main constituents of biological membranes, lipids play a multitude of roles such as in cell signalling, energy storage, and protein transport. Their biological importance has led to an increasing focus on analytical methods for the characterisation of their individual molecular species. Improvements in mass spectrometric technology has provided a great advantage for the characterisation and quantification of molecular lipid species in total lipid extracts (Han and Gross, 2005; Murphy et al., 2001). For instance, phospholipid molecular species can be identified on the basis of a characteristic fragment of the lipid class, the nature of the acyl chains and their positions on the glycerol backbone.A method allowing the quantitative profiling of the yeast lipidome was developed in a recent study using automated shotgun infusion strategy (Ejsing et al., 2009). We applied this method to characterise several lysophospholipid acyltransferase yeast mutants produced using reverse-genetics. These enzymes are involved in essential biological processes like de novo synthesis or remodelling of the phospholipid membrane component (Testet et al., 2005; Le Guedard et al., 2009). The comparative analysis of phospholipid molecular species from the wild-type strain and the corresponding deletion mutants has allowed us to identify lipid compositional changes, and has given us significant indications about the in vivo function of the encoded lysophospholipid acyltransferases

    Caractérisation de lysolipide acyltransférases chez S. cerevisiae - Apport de la Spectrométrie de Masse

    No full text
    En plus de leurs propriĂ©tĂ©s structurales comme constituants majeurs des membranes biologiques des cellules, les lipides jouent de nombreux rĂŽles dans la signalisation cellulaire, le stockage d Ă©nergie et le transport de protĂ©ines. Leurs importances biologiques ont menĂ© Ă  une augmentation accrue des mĂ©thodes analytiques pour la caractĂ©risation d espĂšces molĂ©culaires uniques. De rĂ©cents progrĂšs en spectromĂ©trie de masse ont amenĂ© Ă  la caractĂ©risation et Ă  la quantification des espĂšces molĂ©culaires des lipides dans des extraits lipidiques bruts (Han and Gross, 2005; Murphy et al., 2001). Par exemple, les espĂšces molĂ©culaires de phospholipides peuvent ĂȘtre identifiĂ©es spĂ©cifiquement par leur tĂȘte polaire, la nature de leurs chaĂźnes d acide gras et leur positionnement au niveau du squelette glycĂ©rol.In addition to their structural properties as main constituents of biological membranes, lipids play a multitude of roles such as in cell signalling, energy storage, and protein transport. Their biological importance has led to an increasing focus on analytical methods for the characterisation of their individual molecular species. Improvements in mass spectrometric technology has provided a great advantage for the characterisation and quantification of molecular lipid species in total lipid extracts (Han and Gross, 2005; Murphy et al., 2001). For instance, phospholipid molecular species can be identified on the basis of a characteristic fragment of the lipid class, the nature of the acyl chains and their positions on the glycerol backbone.A method allowing the quantitative profiling of the yeast lipidome was developed in a recent study using automated shotgun infusion strategy (Ejsing et al., 2009). We applied this method to characterise several lysophospholipid acyltransferase yeast mutants produced using reverse-genetics. These enzymes are involved in essential biological processes like de novo synthesis or remodelling of the phospholipid membrane component (Testet et al., 2005; Le Guedard et al., 2009). The comparative analysis of phospholipid molecular species from the wild-type strain and the corresponding deletion mutants has allowed us to identify lipid compositional changes, and has given us significant indications about the in vivo function of the encoded lysophospholipid acyltransferases.BORDEAUX2-Bib. Ă©lectronique (335229905) / SudocSudocFranceF

    A single run LC-MS/MS method for phospholipidomics

    No full text
    International audienc
    corecore