10 research outputs found

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research

    Allelic diversity of metallothionein in Orchesella cincta (L): traces of natural selection by environmental pollution.

    No full text
    The advances made in statistical methods to detect selection from DNA sequence variation has resulted in an enormous increase in the number of studies reporting positive selection. However, a disadvantage of such statistical tests is that often no insight into the actual source of selection is obtained. Finer understanding of evolution can be obtained when those statistical tests are combined with field observations on allele frequencies. We assessed whether the metallothionein (mt) gene of Orchesella cincta (Collembola), which codes for a metal-binding protein, is subject to selection, by investigating alleles and allele frequencies among European metal-stressed and reference populations. Eight highly divergent alleles were resolved in Northwest Europe. At the nucleotide level, a total of 51 polymorphic sites (five of them implying amino-acid changes) were observed. Although statistical tests applied to the sequences alone showed no indication of selection, a G-test rejected the null hypothesis that alleles are homogeneously distributed over metal-stressed and reference populations. Analysis of molecular variance assigned a small, but significant amount of the total variance to differences between metal-stressed and non-stressed populations. In addition, it was shown that metal-stressed populations tend to be more genetically diversified at this locus than non-stressed ones. These results suggest that the mt gene and its surrounding DNA region are affected by environmental metal contamination. This study illustrates that, in addition to statistical tests, field observations on allele frequencies are needed to gain understanding of selection and adaptive evolution. © 2007 Nature Publishing Group. All rights reserved
    corecore