47 research outputs found

    Production of Magnetic Arsenic–Phosphorus Alloy Nanoribbons with Small Band Gaps and High Hole Conductivities

    Get PDF
    Quasi-1D nanoribbons provide a unique route to diversifying the properties of their parent 2D nanomaterial, introducing lateral quantum confinement and an abundance of edge sites. Here, a new family of nanomaterials is opened with the creation of arsenic–phosphorus alloy nanoribbons (AsPNRs). By ionically etching the layered crystal black arsenic–phosphorus using lithium electride followed by dissolution in amidic solvents, solutions of AsPNRs are formed. The ribbons are typically few-layered, several micrometers long with widths tens of nanometers across, and both highly flexible and crystalline. The AsPNRs are highly electrically conducting above 130 K due to their small band gap (ca. 0.035 eV), paramagnetic in nature, and have high hole mobilities, as measured with the first generation of AsP devices, directly highlighting their properties and utility in electronic devices such as near-infrared detectors, quantum computing, and charge carrier layers in solar cells

    Contribution of Cystine-Glutamate Antiporters to the Psychotomimetic Effects of Phencyclidine

    Get PDF
    Altered glutamate signaling contributes to a myriad of neural disorders, including schizophrenia. While synaptic levels are intensely studied, nonvesicular release mechanisms, including cystine–glutamate exchange, maintain high steady-state glutamate levels in the extrasynaptic space. The existence of extrasynaptic receptors, including metabotropic group II glutamate receptors (mGluR), pose nonvesicular release mechanisms as unrecognized targets capable of contributing to pathological glutamate signaling. We tested the hypothesis that activation of cystine–glutamate antiporters using the cysteine prodrug N-acetylcysteine would blunt psychotomimetic effects in the rodent phencyclidine (PCP) model of schizophrenia. First, we demonstrate that PCP elevates extracellular glutamate in the prefrontal cortex, an effect that is blocked by N-acetylcysteine pretreatment. To determine the relevance of the above finding, we assessed social interaction and found that N-acetylcysteine reverses social withdrawal produced by repeated PCP. In a separate paradigm, acute PCP resulted in working memory deficits assessed using a discrete trial t-maze task, and this effect was also reversed by N-acetylcysteine pretreatment. The capacity of N-acetylcysteine to restore working memory was blocked by infusion of the cystine–glutamate antiporter inhibitor (S)-4-carboxyphenylglycine into the prefrontal cortex or systemic administration of the group II mGluR antagonist LY341495 indicating that the effects of N-acetylcysteine requires cystine–glutamate exchange and group II mGluR activation. Finally, protein levels from postmortem tissue obtained from schizophrenic patients revealed significant changes in the level of xCT, the active subunit for cystine–glutamate exchange, in the dorsolateral prefrontal cortex. These data advance cystine–glutamate antiporters as novel targets capable of reversing the psychotomimetic effects of PCP

    Pupillary Stroop effects

    Get PDF
    We recorded the pupil diameters of participants performing the words’ color-naming Stroop task (i.e., naming the color of a word that names a color). Non-color words were used as baseline to firmly establish the effects of semantic relatedness induced by color word distractors. We replicated the classic Stroop effects of color congruency and color incongruency with pupillary diameter recordings: relative to non-color words, pupil diameters increased for color distractors that differed from color responses, while they reduced for color distractors that were identical to color responses. Analyses of the time courses of pupil responses revealed further differences between color-congruent and color-incongruent distractors, with the latter inducing a steep increase of pupil size and the former a relatively lower increase. Consistent with previous findings that have demonstrated that pupil size increases as task demands rise, the present results indicate that pupillometry is a robust measure of Stroop interference, and it represents a valuable addition to the cognitive scientist’s toolbox

    Context processing performance in bipolar disorder patients

    No full text
    OBJECTIVES: Context processing is the adaptive control of current behavior through the use of prior context information. It has been found to be impaired in schizophrenia. Some studies have indicated that, compared with patients with schizophrenia, those with bipolar disorder (BPD) display a similar but less severe neuropsychological pattern of impairment. However, this cognitive dimension has not yet been examined in BPD patients in the existing literature. METHODS: An expectancy version of the AX continuous performance test (AX-CPT) was administered to 15 bipolar outpatients and 26 healthy controls. Patients with schizophrenia, in which context processing deficits are known to occur, were used as a reference group. RESULTS: Bipolar patients showed a context processing deficit relative to healthy controls, although this was less severe and generalized than in schizophrenia patients. CONCLUSIONS: These findings suggest there are milder impairments in context processing in BPD compared with schizophrenia. However, the severity of possible context processing deficits in BPD may have been underestimated in our sample of mostly euthymic outpatients

    The neural circuitry supporting goal maintenance during cognitive control: a comparison of expectancy AX-CPT and dot probe expectancy paradigms

    No full text
    Goal maintenance is an aspect of cognitive control that has been identified as critical for understanding psychopathology according to criteria of the NIMH-sponsored CNTRICS (Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia) and Research Domain Criteria (RDoC) initiatives. CNTRICS proposed the expectancy AX-CPT, and its visual-spatial parallel the dot probe expectancy (DPX), as valid measures of the cognitive and neural processes thought to be relevant for goal maintenance. The goal of this study was to specifically examine the functional neural correlates and connectivity patterns of both goal maintenance tasks in the same subset of subjects to further validate their neural construct validity and clarify our understanding of the nature and function of the neural circuitry engaged by the tasks. Twenty-six healthy control subjects performed both the letter (AX) and dot pattern (DPX) variants of the CPT during fMRI. Behavioral performance was similar between tasks. The 2 tasks engaged the same brain networks including dorsolateral prefrontal cortex (DLPFC) and dorsal parietal regions, supporting their validity as complementary measures of the goal maintenance construct. Interestingly there was greater engagement of the frontal opercular insula region during the expectancy AX-CPT (letter) and greater functional connectivity between the PFC and medial temporal lobe in the DPX (dot pattern). These differences are consistent with differential recruitment of phonological and visual-spatial processes by the two tasks and suggest that additional long-term memory systems may be engaged by the dot probe version
    corecore