664 research outputs found

    A Cluster Algorithm for the Z2Z_2 Kalb-Ramond Model

    Get PDF
    A cluster algorithm is presented for the Z2Z_2 Kalb-Ramond plaquette model in four dimensions which dramatically reduces critical slowing. The critical exponent zz is reduced from z>2 z>2 (standard Metropolis algorithm) to z=0.32±0.06z= 0.32\pm0.06. The Cluster algorithm updates the monopole configuration known to be responsible for the second order phase transition.Comment: 9 pages, LaTeX + 7 figures in self-extracting shell archiv

    Multigrid Methods in Lattice Field Computations

    Full text link
    The multigrid methodology is reviewed. By integrating numerical processes at all scales of a problem, it seeks to perform various computational tasks at a cost that rises as slowly as possible as a function of nn, the number of degrees of freedom in the problem. Current and potential benefits for lattice field computations are outlined. They include: O(n)O(n) solution of Dirac equations; just O(1)O(1) operations in updating the solution (upon any local change of data, including the gauge field); similar efficiency in gauge fixing and updating; O(1)O(1) operations in updating the inverse matrix and in calculating the change in the logarithm of its determinant; O(n)O(n) operations per producing each independent configuration in statistical simulations (eliminating CSD), and, more important, effectively just O(1)O(1) operations per each independent measurement (eliminating the volume factor as well). These potential capabilities have been demonstrated on simple model problems. Extensions to real life are explored.Comment: 4

    The critical behaviour of Ising spins on 2D Regge lattices

    Get PDF
    We performed a high statistics simulation of Ising spins coupled to 2D quantum gravity on toroidal geometries. The tori were triangulated using the Regge calculus approach and contained up to 5122512^2 vertices. We used a constant area ensemble with an added R2R^2 interaction term, employing the dl/ldl/l measure. We find clear evidence that the critical exponents of the Ising phase transition are consistent with the static critical exponents and do not depend on the coupling strength of the R2R^2 interaction term. We definitively can exclude for this type of model a behaviour as predicted by Boulatov and Kazakov [Phys. Lett. {\bf B186}, 379 (1987)] for Ising spins coupled to dynamically triangulated surfaces.Comment: 15 pages with 3 figures in form of an uudecoded compressed tar-ps-file. FUB-HEP 06/9

    Ising Model Coupled to Three-Dimensional Quantum Gravity

    Full text link
    We have performed Monte Carlo simulations of the Ising model coupled to three-dimensional quantum gravity based on a summation over dynamical triangulations. These were done both in the microcanonical ensemble, with the number of points in the triangulation and the number of Ising spins fixed, and in the grand canoncal ensemble. We have investigated the two possible cases of the spins living on the vertices of the triangulation (``diect'' case) and the spins living in the middle of the tetrahedra (``dual'' case). We observed phase transitions which are probably second order, and found that the dual implementation more effectively couples the spins to the quantum gravity.Comment: 11 page

    D-Theory: Field Theory via Dimensional Reduction of Discrete Variables

    Get PDF
    A new non-perturbative approach to quantum field theory --- D-theory --- is proposed, in which continuous classical fields are replaced by discrete quantized variables which undergo dimensional reduction. The 2-d classical O(3) model emerges from the (2+1)-d quantum Heisenberg model formulated in terms of quantum spins. Dimensional reduction is demonstrated explicitly by simulating correlation lengths up to 350,000 lattice spacings using a loop cluster algorithm. In the framework of D-theory, gauge theories are formulated in terms of quantum links --- the gauge analogs of quantum spins. Quantum links are parallel transporter matrices whose elements are non-commuting operators. They can be expressed as bilinears of anticommuting fermion constituents. In quantum link models dimensional reduction to four dimensions occurs, due to the presence of a 5-d Coulomb phase, whose existence is confirmed by detailed simulations using standard lattice gauge theory. Using Shamir's variant of Kaplan's fermion proposal, in quantum link QCD quarks appear as edge states of a 5-d slab. This naturally protects their chiral symmetries without fine-tuning. The first efficient cluster algorithm for a gauge theory with a continuous gauge group is formulated for the U(1) quantum link model. Improved estimators for Wilson loops are constructed, and dimensional reduction to ordinary lattice QED is verified numerically.Comment: 15 pages, LaTeX, including 9 encapsulated postscript figures. Contribution to Lattice 97 by 5 authors, to appear in Nuclear Physics B (Proceeding Supplements). Requires psfig.tex and espcrc2.st

    Screening and Deconfinement of Sources in Finite Temperature SU(2) Lattice Gauge Theory

    Full text link
    Deconfinement and screening of higher-representation sources in finite-temperature SU(2)SU(2) lattice gauge theory is investigated by both analytical and numerical means. The effective Polyakov-line action at strong coupling is simulated by an efficient cluster-updating Monte Carlo algorithm for the case of d ⁣= ⁣4d\!=\!4 dimensions. The results compare very favourably with an improved mean-field solution. The limit d ⁣ ⁣d\!\to\!\infty of the SU(2)SU(2) theory is shown to be highly singular as far as critical behaviour is concerned. In that limit the leading amplitudes of higher representation Polyakov lines vanish at strong coupling, and subleading exponents become dominant. Each of the higher-representation sources then effectively carry with them their own critical exponents.Comment: 13pages+7figures, CERN-TH-7222/94 One reference added, else unchange

    Kinematics of Multigrid Monte Carlo

    Full text link
    We study the kinematics of multigrid Monte Carlo algorithms by means of acceptance rates for nonlocal Metropolis update proposals. An approximation formula for acceptance rates is derived. We present a comparison of different coarse-to-fine interpolation schemes in free field theory, where the formula is exact. The predictions of the approximation formula for several interacting models are well confirmed by Monte Carlo simulations. The following rule is found: For a critical model with fundamental Hamiltonian H(phi), absence of critical slowing down can only be expected if the expansion of in terms of the shift psi contains no relevant (mass) term. We also introduce a multigrid update procedure for nonabelian lattice gauge theory and study the acceptance rates for gauge group SU(2) in four dimensions.Comment: 28 pages, 8 ps-figures, DESY 92-09

    Enchytraeus crypticus Avoid Soil Spiked with Microplastic.

    Full text link
    Microplastics (MPs) of varying sizes are widespread pollutants in our environment. The general opinion is that the smaller the size, the more dangerous the MPs are due to enhanced uptake possibilities. It would be of considerably ecological significance to understand the response of biota to microplastic contamination both physically and physiologically. Here, we report on an area choice experiment (avoidance test) using Enchytraeus crypticus, in which we mixed different amounts of high-density polyethylene microplastic particles into the soil. In all experimental scenarios, more Enchytraeids moved to the unspiked sections or chose a lower MP-concentration. Worms in contact with MP exhibited an enhanced oxidative stress status, measured as the induced activity of the antioxidative enzymes catalase and glutathione S-transferase. As plastic polymers per se are nontoxic, the exposure time employed was too short for chemicals to leach from the microplastic, and as the microplastic particles used in these experiments were too large (4 mm) to be consumed by the Enchytraeids, the likely cause for the avoidance and oxidative stress could be linked to altered soil properties

    Dgsos on DTRS

    Full text link
    We perform simulations of a discrete gaussian solid on solid (DGSOS) model on dynamical ϕ3\phi^3 graphs, which is equivalent to coupling the model to 2d quantum gravity, using the cluster algorithms recently developed by Evertz et.al.for use on fixed lattices. We find evidence from the growth of the width-squared in the rough phase of KT-like behaviour, which is consistent with theoretical expectations. We also investigate the cluster statistics, dynamical critical exponent and lattice properties, and compare these with the dual XY model.Comment: 9 pages, COLO-HEP-32
    corecore