133 research outputs found

    Introduction of Large-Fruited Strawberry Varieties on the Territory of the Novosibirsk Region in the Conditions of Western Siberia

    Get PDF
    Background: For the Novosibirsk region, the need for planting material suitable for growing varieties is very high. The relatively easy technology of growing strawberries allows obtaining high yields not only for those who grow them but also on an industrial scale. Strawberry fruits contain a huge number of useful elements, including vitamins, which are necessary for the human body. The study aimed to determine the influence of the maturity group on the yield of introduced varieties of large-fruited garden strawberries.Methods: Records and observations were carried out from May 2019 to September 2020 at the collection site of the biological polygon of the Federal State Budgetary Research Institution Siberian Physical and Technical Institute in the Novosibirsk Region.Results: During the years of the study, the weather conditions of the spring period developed successfully for the growth and development of strawberries. Thus, on average, over the years of the study, high yields were shown of different maturity groups.Conclusion: The obtained yield indicators obtained were not inferior to previously zoned and local varieties, which shows that planting can be carried out both in traditional soil and in soilless culture. Thus, the quality and quantity of fruits does not change with the physicochemical properties or methods of cultivation but depends on the age of the plant and the seasonal crop cycle

    The absorption spectrum of short-lived isotopic variant of water, H₂¹⁵O: Tentative detection at the Earth's atmosphere

    Get PDF
    A calculated infrared vibration–rotation spectrum of isotopically modified water, H215O, is presented. Oxygen-15 has a half-life of about 2 minutes and H215O may be formed in the atmosphere during thunderstorms as a result of photonuclear processes or when the atmosphere is irradiated by cosmic γ-rays. Variational nuclear motion calculations of vibrational and vibrational-rotational levels up to 25000 cm−1 and up to J = 10 in angular momentum are performed within the framework of the Born-Oppenheimer approximation using an accurate water potential function. The line shape parameters for H215O are estimated. Spectral ranges that are promising for the detection of H215O in the atmosphere are identified and a search for spectral signatures conducted. A spectral feature is tentatively assigned to the 752 (0 1 0) - 643 (0 0 0) line of H215O

    Inaccurate DNA Synthesis in Cell Extracts of Yeast Producing Active Human DNA Polymerase Iota

    Get PDF
    Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn2+ ions, can bypass some DNA lesions and misincorporates “G” opposite template “T” more frequently than incorporates the correct “A.” We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of “G” versus “A” method of Gening, abbreviated as “misGvA”). We provide unambiguous proof of the “misGvA” approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The “misGvA” activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts

    Sm/Lsm Genes Provide a Glimpse into the Early Evolution of the Spliceosome

    Get PDF
    The spliceosome, a sophisticated molecular machine involved in the removal of intervening sequences from the coding sections of eukaryotic genes, appeared and subsequently evolved rapidly during the early stages of eukaryotic evolution. The last eukaryotic common ancestor (LECA) had both complex spliceosomal machinery and some spliceosomal introns, yet little is known about the early stages of evolution of the spliceosomal apparatus. The Sm/Lsm family of proteins has been suggested as one of the earliest components of the emerging spliceosome and hence provides a first in-depth glimpse into the evolving spliceosomal apparatus. An analysis of 335 Sm and Sm-like genes from 80 species across all three kingdoms of life reveals two significant observations. First, the eukaryotic Sm/Lsm family underwent two rapid waves of duplication with subsequent divergence resulting in 14 distinct genes. Each wave resulted in a more sophisticated spliceosome, reflecting a possible jump in the complexity of the evolving eukaryotic cell. Second, an unusually high degree of conservation in intron positions is observed within individual orthologous Sm/Lsm genes and between some of the Sm/Lsm paralogs. This suggests that functional spliceosomal introns existed before the emergence of the complete Sm/Lsm family of proteins; hence, spliceosomal machinery with considerably fewer components than today's spliceosome was already functional

    The methanol dehydrogenase gene, mxaF, as a functional and phylogenetic marker for proteobacterial methanotrophs in natural environments

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e56993, doi:10.1371/journal.pone.0056993.The mxaF gene, coding for the large (α) subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera. This study examined the potential for using the mxaF gene as a functional and phylogenetic marker for methanotrophs. mxaF and 16S rRNA gene phylogenies were constructed based on over 100 database sequences of known proteobacterial methanotrophs and other methylotrophs to assess their evolutionary histories. Topology tests revealed that mxaF and 16S rDNA genes of methanotrophs do not show congruent evolutionary histories, with incongruencies in methanotrophic taxa in the Methylococcaceae, Methylocystaceae, and Beijerinckiacea. However, known methanotrophs generally formed coherent clades based on mxaF gene sequences, allowing for phylogenetic discrimination of major taxa. This feature highlights the mxaF gene’s usefulness as a biomarker in studying the molecular diversity of proteobacterial methanotrophs in nature. To verify this, PCR-directed assays targeting this gene were used to detect novel methanotrophs from diverse environments including soil, peatland, hydrothermal vent mussel tissues, and methanotroph isolates. The placement of the majority of environmental mxaF gene sequences in distinct methanotroph-specific clades (Methylocystaceae and Methylococcaceae) detected in this study supports the use of mxaF as a biomarker for methanotrophic proteobacteria.This work was supported in part by grants from the U.S. National Science Foundation Ecosystems Studies program (awards # DEB9708092 and DEB0089738)

    Adaptative Potential of the Lactococcus Lactis IL594 Strain Encoded in Its 7 Plasmids

    Get PDF
    The extrachromosomal gene pool plays a significant role both in evolution and in the environmental adaptation of bacteria. The L. lactis subsp. lactis IL594 strain contains seven plasmids, named pIL1 to pIL7, and is the parental strain of the plasmid-free L. lactis IL1403, which is one of the best characterized lactococcal strains of LAB. Complete nucleotide sequences of pIL1 (6,382 bp), pIL2 (8,277 bp), pIL3 (19,244 bp), pIL4 (48,979), pIL5 (23,395), pIL6 (28,435 bp) and pIL7 (28,546) were established and deposited in the generally accessible database (GeneBank). Nine highly homologous repB-containing replicons, belonging to the lactococcal theta-type replicons, have been identified on the seven plasmids. Moreover, a putative region involved in conjugative plasmid mobilization was found on four plasmids, through identification of the presence of mob genes and/or oriT sequences. Detailed bioinformatic analysis of the plasmid nucleotide sequences provided new insight into the repertoire of plasmid-encoded functions in L. lactis, and indicated that plasmid genes from IL594 strain can be important for L. lactis adaptation to specific environmental conditions (e.g. genes coding for proteins involved in DNA repair or cold shock response) as well as for technological processes (e.g. genes encoding citrate and lactose utilization, oligopeptide transport, restriction-modification system). Moreover, global gene analysis indicated cooperation between plasmid- and chromosome-encoded metabolic pathways

    A Complete Analysis of HA and NA Genes of Influenza A Viruses

    Get PDF
    BACKGROUND: More and more nucleotide sequences of type A influenza virus are available in public databases. Although these sequences have been the focus of many molecular epidemiological and phylogenetic analyses, most studies only deal with a few representative sequences. In this paper, we present a complete analysis of all Haemagglutinin (HA) and Neuraminidase (NA) gene sequences available to allow large scale analyses of the evolution and epidemiology of type A influenza. METHODOLOGY/PRINCIPAL FINDINGS: This paper describes an analysis and complete classification of all HA and NA gene sequences available in public databases using multivariate and phylogenetic methods. CONCLUSIONS/SIGNIFICANCE: We analyzed 18,975 HA sequences and divided them into 280 subgroups according to multivariate and phylogenetic analyses. Similarly, we divided 11,362 NA sequences into 202 subgroups. Compared to previous analyses, this work is more detailed and comprehensive, especially for the bigger datasets. Therefore, it can be used to show the full and complex phylogenetic diversity and provides a framework for studying the molecular evolution and epidemiology of type A influenza virus. For more than 85% of type A influenza HA and NA sequences into GenBank, they are categorized in one unambiguous and unique group. Therefore, our results are a kind of genetic and phylogenetic annotation for influenza HA and NA sequences. In addition, sequences of swine influenza viruses come from 56 HA and 45 NA subgroups. Most of these subgroups also include viruses from other hosts indicating cross species transmission of the viruses between pigs and other hosts. Furthermore, the phylogenetic diversity of swine influenza viruses from Eurasia is greater than that of North American strains and both of them are becoming more diverse. Apart from viruses from human, pigs, birds and horses, viruses from other species show very low phylogenetic diversity. This might indicate that viruses have not become established in these species. Based on current evidence, there is no simple pattern of inter-hemisphere transmission of avian influenza viruses and it appears to happen sporadically. However, for H6 subtype avian influenza viruses, such transmissions might have happened very frequently and multiple and bidirectional transmission events might exist

    The non-coding transcriptome as a dynamic regulator of cancer metastasis.

    Get PDF
    Since the discovery of microRNAs, non-coding RNAs (NC-RNAs) have increasingly attracted the attention of cancer investigators. Two classes of NC-RNAs are emerging as putative metastasis-related genes: long non-coding RNAs (lncRNAs) and small nucleolar RNAs (snoRNAs). LncRNAs orchestrate metastatic progression through several mechanisms, including the interaction with epigenetic effectors, splicing control and generation of microRNA-like molecules. In contrast, snoRNAs have been long considered "housekeeping" genes with no relevant function in cancer. However, recent evidence challenges this assumption, indicating that some snoRNAs are deregulated in cancer cells and may play a specific role in metastasis. Interestingly, snoRNAs and lncRNAs share several mechanisms of action, and might synergize with protein-coding genes to generate a specific cellular phenotype. This evidence suggests that the current paradigm of metastatic progression is incomplete. We propose that NC-RNAs are organized in complex interactive networks which orchestrate cellular phenotypic plasticity. Since plasticity is critical for cancer cell metastasis, we suggest that a molecular interactome composed by both NC-RNAs and proteins orchestrates cancer metastasis. Interestingly, expression of lncRNAs and snoRNAs can be detected in biological fluids, making them potentially useful biomarkers. NC-RNA expression profiles in human neoplasms have been associated with patients' prognosis. SnoRNA and lncRNA silencing in pre-clinical models leads to cancer cell death and/or metastasis prevention, suggesting they can be investigated as novel therapeutic targets. Based on the literature to date, we critically discuss how the NC-RNA interactome can be explored and manipulated to generate more effective diagnostic, prognostic, and therapeutic strategies for metastatic neoplasms
    corecore