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Abstract

The mxaF gene, coding for the large (a) subunit of methanol dehydrogenase, is highly conserved among distantly related
methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to
other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic
proteobacterial genera. This study examined the potential for using the mxaF gene as a functional and phylogenetic marker
for methanotrophs. mxaF and 16S rRNA gene phylogenies were constructed based on over 100 database sequences of
known proteobacterial methanotrophs and other methylotrophs to assess their evolutionary histories. Topology tests
revealed that mxaF and 16S rDNA genes of methanotrophs do not show congruent evolutionary histories, with
incongruencies in methanotrophic taxa in the Methylococcaceae, Methylocystaceae, and Beijerinckiacea. However, known
methanotrophs generally formed coherent clades based on mxaF gene sequences, allowing for phylogenetic discrimination
of major taxa. This feature highlights the mxaF gene’s usefulness as a biomarker in studying the molecular diversity of
proteobacterial methanotrophs in nature. To verify this, PCR-directed assays targeting this gene were used to detect novel
methanotrophs from diverse environments including soil, peatland, hydrothermal vent mussel tissues, and methanotroph
isolates. The placement of the majority of environmental mxaF gene sequences in distinct methanotroph-specific clades
(Methylocystaceae and Methylococcaceae) detected in this study supports the use of mxaF as a biomarker for
methanotrophic proteobacteria.
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Introduction

Atmospheric methane contributes to ,20% of the total

radiative forcing by long-lived greenhouse gases globally. Due to

the relatively short lifetime of atmospheric methane (,9 yrs)

compared to CO2, reductions in atmospheric methane flux would

have an immediate impact on global warming [1]. Microbial

methane oxidation is the only major biological sink of methane

[2]. With the exception of members of the phylum Verrucomi-

crobia [3], and the yet to be cultured anaerobic methane-oxidizers

(ANME) [4,5], and denitrifying methanotrophs of the ‘NC10’

phylum, aerobic proteobacterial methanotrophs are the only

currently known groups of microorganisms capable of oxidizing

methane as their sole carbon source [6,7,8], thus reducing

atmospheric methane flux.

Aerobic proteobacterial methanotrophs are unique among the

larger group of methylotrophic bacteria (which are able to utilize

C1 or one-carbon compounds) in that they oxidize methane to

methanol, before subsequent metabolic reactions that are shared

with other methylotrophs. In contrast, non-methanotrophic

methylotrophs are unable to utilize methane, but can grow on

other C1 compounds (e.g., methanol, methylated amines, formate,

or formamide) [9,10]. The vast majority of known aerobic

methanotrophs belong to the Proteobacteria. Known exceptions

include the phylum Verrucomicrobia, whose pathways for

methanotrophy are still poorly understood [3,11,12], and enrich-

ments of the uncultured methanotrophs such as Candidatus

‘Methylomirabilis oxyfera’ affiliated with the ‘NC10’ phylum,

which appear to be incapable of oxidizing methane at low (#8%)

oxygen levels in the laboratory [7,8,13]. Proteobacterial methano-

trophs are placed in the families Methylococcaceae in the

Gammaproteobacteria, and Methylocystaceae and Beijerinckia-

ceae in the Alphaproteobacteria [14,15].

The similarities in physiological characteristics, and the

generally highly conserved nature of the 16S rRNA and functional

gene sequences of proteobacterial methanotrophs, have enabled

the use of targeted PCR primers for gene amplification to describe

methanotroph diversity [15,16]. However, the 16S rRNA gene is

non-protein coding (i.e., not linked directly to methanotroph

physiology), and therefore does not directly determine function.

For example, it cannot be determined whether 16S rDNA

environmental sequences placed close to, but outside of, known
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monophyletic methanotroph clades are indeed methanotrophic

[17,18]. In comparison, functional genes for enzymes found in

methanotroph metabolic pathways are directly related to physi-

ology [19]. The initial step of methane oxidation to methanol by

proteobacterial methanotrophs is mediated by particulate and/or

soluble methane monooxygenases (MMOs) [15,20]. Genes in this

step, such as pmoA [encoding a subunit of the particulate methane

monooxygenase (pMMO)] and mmoX [encoding a subunit of the

soluble methane monooxygenase (sMMO)] have been used for

describing methanotroph diversity [17]. However, the pmoA gene

is not present in the genera Methylocella and Methyloferula

[21,22,23], and the mmoX gene is present only in a few strains of

methanotrophs [15,24]. Hence, the use of both pmoA and mmoX

genes in PCR-based studies results in the underestimation of

methanotroph diversity and suggests that an alternative is needed.

The mxaF gene was first proposed as a functional gene probe for

methylotrophs by McDonald and Murrell [19]. Methane oxida-

tion gene cluster A (mxaF) encodes the a-subunit of the enzyme

methanol dehydrogenase (MDH), an enzyme containing a

pyrroloquinoline quinone (PQQ) cofactor that oxidizes methanol

to formaldehyde in the second step of the methane oxidation

pathway, following oxidation of methane to methanol

[20,25,26,27,28]. Methanol dehydrogenase is common to all

methanotrophs in the Proteobacteria [15,19], but is absent in

members of the phylum Verrucomicrobia, which possess a

homolog of the mxaF gene, called xoxF gene, a gene of unknown

function [29,30,31,32]. Sequences of the mxaF gene are highly

conserved in methylotrophic species in the Alpha-, Beta- and

Gammaproteobacteria, reflecting 16S rDNA phylogeny

[19,32,33]. In studies thus far based on the mxaF gene, a limited

number of representative methanotrophs (,15 taxa) have been

placed in generally distinct and coherent clades separate from the

other methylotrophs [15,19,24,32]. These studies indicate the

mxaF gene can be a useful phylogenetic marker for the

classification of methanotrophs.

However, the extent to which mxaF gene sequences of all known

proteobacterial methanotrophs can be placed in separate distinct

phylogenetic clades has yet to be determined. This may affect its

accuracy as a reliable functional biomarker and potentially lead to

incorrect inferences when determining phylogenetic relationships,

notably if horizontal gene transfer has occurred across these taxa.

To date, no extensive phylogenetic comparisons of proteobacterial

methylotroph (including methanotroph) mxaF gene sequences have

been conducted. In the only study of mxaF phylogeny of the family

Methylocystaceae (genera Methylosinus and Methylocystis), represen-

tative mxaF genes sequences from this family clustered within a

distinct clade, but did not separate according to genus-specific

subclades, suggesting that horizontal transfer of this gene may

have occurred across this family. However the study did not

indicate the extent of horizontal gene transfer in other proteo-

bacterial methanotrophs, and which taxa were involved [17].

Previous studies of mxaF revealed that it is related to quinone

alcohol dehydrogenases (ADHs), which utilize a variety of primary

and secondary alcohols, but not methanol, as substrates [34], and

that mxaF is related to xoxF [32].

Here, we examined whether the mxaF and 16S rRNA gene

phylogenies of methanotrophs from the GenBank [35] database

reflect congruent evolutionary histories. Though Candidatus M.

oxyfera (and members of NC10 phylum) possesses an mxaF-like

gene, it is placed outside of known proteobacterial mxaF gene

clusters (data not shown). Candidatus M. oxyfera’s genome lacks any

known PQQ-biosynthesis pathways and thus may not be able to

oxidize methanol on its own [8]. Hence it was not included in our

analyses.

This study addresses the following questions, (a) Does the

extensive mxaF gene phylogeny discriminate between methano-

trophic and other methylotrophic sequences available in genetic

databases? (b) Are the mxaF and16S rRNA gene phylogenies

congruent for methanotrophs in the families Methylocystaceae,

Methylococcaceae, and Beijerinkiaceae? (c) Can we tell whether

mxaF genes retrieved from the environment belong to methano-

trophs or methylotrophs? These questions are addressed using

phylogenetic analyses involving sequences from published data-

bases, as well as mxaF sequences obtained in this study from

surveys of diverse environments (forest soils, peat and Sphagnum

moss, and symbiont-hosting mussel gills) and from methanotroph

cultures. Overall, these analyses advance the study of methano-

troph diversity by showing that the mxaF gene consistently places

methanotroph sequences in resolved phylogenetic clusters for all

known members of the families Methylocystaceae and Methylo-

coccaceae, and has the potential to elucidate the roles methano-

trophs play in natural environments.

Materials and Methods

Cultures
Two mxaF gene sequences were determined in this study for

cultured species of the Methylococcaceae, Methylomonas rubra and

Methylobacter luteus, provided by J. Semrau and R. Knowles,

respectively. Positive control cultures used in this study included

two members of the Methylocystaceae and a member of the

Methylococcaceae for which mxaF gene sequences are already

available: Methylosinus trichosporium OB3b, Methylocystis parvus OBBP,

Methylomicrobium album BG8, respectively.

Collections and Site Descriptions
Samples for DNA extraction or bacterial isolation were

collected from four distinct habitats for DNA extraction or

bacterial isolation: (a) Four soil samples, weighing ,15 g, from the

organic horizon of long-term nitrogen-amended and control pine

and hardwood forest soils of the Harvard Forest Long-Term

Ecological Research (LTER) site, previously shown to oxidize

methane at atmospheric levels, in Petersham, Massachusetts

(42u309N, 72u109W) in 2004 [18,36], (b) Sphagnum recurvum moss

and peat from Crystal Bog (Vilas county, Wisconsin), a 7 ha poor

fen enclosing a 2.5 m deep, 0.54 ha, dystrophic lake on the North

Temperate Lakes LTER site in 2005 (46u009300N 89u369300W)

[37], (c) two species of methanotroph-hosting mussels (n = 3 per

site) from the Mid-Atlantic Ridge (MAR) deep-sea vent sites

sampled in 2003 using DSV Alvin: Bathymodiolus azoricus from

Lucky Strike (LS; 37u179N, 32u169W; 1693 m deep) and Rainbow

(RB; 36u139N, 33u549W, 2300 m deep), and Bathymodiolus

puteoserpentis from Logatchev (LO; 14u459N, 44u589W; 3027 m

deep) [38,39], and (d) the Halls Brook Holding Area (HBHA), an

artificial lake in the Aberjona Watershed, sampled in 2004, near

Boston, MA, which becomes stratified during the summer months,

whereby the bottom depths become anoxic [40]. No specific

permissions were required for collecting samples in these locations

because samples did not involve endangered or protected species,

Harvard Forest is owned by Harvard University and permission is

granted to research employees, and Crystal Bog and Halls Brook

Holding Area are located on public land.

Methanotroph Isolation, DNA Extraction, and Purification
Methanotrophic HBHA isolate 1 and HBHA isolate 2 were

isolated from water collected at the oxic-anoxic interface at HBHA

(,1 m depth) using sterile TygonH tubing connected to a

peristaltic pump, and injected into sterile flasks containing Nitrate
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Mineral Salts (NMS) minimal medium [41], under 90:10 air:-

methane headspace, and incubated with shaking at room

temperature. Both isolates failed to grow in the absence of

methane and oxygen. Purified DNA from methanotroph cultures

was obtained using the WizardH Genomic DNA Purification Kit

(Promega Inc.). DNA from endosymbiont-containing mussel gill

tissue and forest soils was obtained as previously described [18,38].

DNA was extracted from HBHA isolates, peat and Sphagnum moss

following the method as previously described [18].

Primer Design, PCR Amplification, Cloning, and
Sequencing

Methylotroph mxaF-specific PCR primers F1003 and R1561 (

[33]; Table 1) sequences were verified through BLAST [42] to

determine their specificity to proteobacterial methanotrophs in the

GenBank [35] database, and used to amplify partial mxaF gene

sequences from soils, peat, Sphagnum moss, methanotrophic HBHA

isolates 1 and 2, and control methanotroph cultures. The

amplified region encompasses three amino acid residues (out of

eight) in the MDH active sites – Asn-261, Asp-303 and Arg-331–

based on the amino acid sequence of Methylobacterium extorquens

MDH [26]. BLAST searches of the primer pair F1003 and R1561

retrieved only proteobacterial mxaF genes, but not that of

Candidatus ‘Methylomirabilis oxyfera.’

Additionally, degenerate primers F1003degen and R1561degen

(Table 1) were created after comparing amino acid sequences of

MDH retrieved from the GenBank database and identifying

degenerate base positions where more than one nucleotide codon

specified the same amino acid residue. The degenerate primers

were used to PCR amplify mxaF genes from DNA extracts of

mussel tissues, as primers F1003 and R1561 failed to PCR amplify

mxaF genes from the same DNA extracts. The same primers were

also used to PCR amplify mxaF genes from Sphagnum moss in order

to verify these primers also PCR amplify mxaF sequences outside of

the Methylococcaceae. All PCR reaction mixtures contained 16
PCR buffer (Qiagen Inc.), 2.5 mM MgCl2, 300 mM final

concentration of each dNTP, a 1.0 mM final concentration of

each primer, 1.0 U of Taq polymerase, and approximately 300–

800 ng of template DNA in a final volume of 25 ml. PCR

conditions were: denaturation at 94uC for 45 sec, primer

annealing at 60uC for 1 min, extension at 72uC for 1.5 min for

30 cycles, and a final 10 min extension at 72uC. PCR products of

the expected size (,550 bp for mxaF gene) were purified, cloned,

and sequenced (.3 clones per sample).

Cloning and Sequencing
PCR products of the expected size (,550 bp for mxaF) were

purified (QIAquick PCR Purification Kit, Qiagen Inc.), cloned

(pCRH2.1-TOPO vector from the TOPO TA Cloning Kit,

Invitrogen Corp.) using chemical method on TOP 10 competent

cells, and plated on LB agar plates containing 50 mg ml21

kanamycin, and 40 mg ml21 X-Gal (5-bromo-4-chloro-3-indolyl-

b-D-Galactopyranoside). Colonies were screened for inserts using

the respective primers via PCR. Plasmid DNA was isolated from

positive clones using the QIAprepâ Spin MiniPrep Kit (Qiagen

Inc.). Sequencing reactions were performed using the ABI

PRISMH Big Dye Terminator Cycle Sequencing kit (version 3.1,

Applied BiosystemsH) and an ABI model 3100 automated

sequencer (Applied BiosystemsH) according to the manufacturer’s

instructions. Recombinants were sequenced in both directions

using M13 forward and reverse primers. For environmental DNA

extracts, at least five clones were sequenced from each PCR

reaction. For Bathymodiolus mussels, three clones each were

sequenced from frozen gill tissue of three B. azoricus mussels from

LS, three B. azoricus mussels from RB, and three B. puteoserpentis

mussels from LO, for a total of 27 sequences.

Phylogenetic Analyses of Methylotrophic Bacterial
Sequences from GenBank Database

The ADH gene and/or 16S rRNA gene sequences of Solibacter

usitatus Ellin 6076 (GenBank Accession no. NC_008536/

CP000473, Phylum Acidobacteria) were used as outgroup in all

phylogenetic analyses. mxaF gene sequences were aligned using

ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) and

manually inspected in MacClade 4.08 (Sinauer Associates Inc.,

Sunderland, MA). Phylogenetic reconstruction was implemented

using PAUP 4.0B10 [43] and Geneious 4.85 (http://www.

geneious.com/) with PAUP plug-in. Unless stated otherwise,

statistical support for all trees were obtained from 1,000 bootstrap

replicates under the same initial settings (only bootstrap values

.50% are reported). Pairwise base comparisons of mxaF

nucleotide sequences within and between phylogenetic groups

were determined using ClustalW2 and reported as % identity

values.

(a) Congruency tests between mxaF and 16S rRNA gene

tree topologies. The program Modeltest [44] was used to

determine the bestfit substitution model under Maximum Likeli-

hood (ML) analysis (from PAUP software) for each dataset, and

searched heuristically for the best model of nucleic acid sequence

evolution that best fits our data. The topology of the best tree from

ML analyses of each dataset was saved and then enforced as a

topological constraint during subsequent paired ML phylogenetic

analyses for each dataset. One-tailed Templeton and Shimodaira-

Hasegawa (SH) tests were used to compare the constrained and

unconstrained topologies using reestimated log likelihoods (RELL)

simulation [45,46] and full optimization distributions using 10,000

bootstrap replicates under the likelihood tree scores menu.

Uncorrected and Bonferroni-corrected P-values were reported

for one-tailed Templeton and SH tests [45]. Confidence intervals

were determined for the null hypotheses: the unconstrained and

constrained ML tree of each dataset tested have significantly

different likelihood scores. The data consisted of nineteen

methanotroph taxa spanning three families (Methylocystaceae,

Beijerinckiaceae, and Methylococcaceae) and one outgroup for

which both genes were available: (a) seven members of the

Methylocystaceae – Methylosinus trichosporium BF1, M. trichosporium

O19/1, M. trichosporium KS21, Methylosinus sporium F10/1b,

Methylocystis echinoides IMET10491, Methylocystis sp. IMET10489,

and Methylocystis sp. IMET10484, (b) four members of the

methanotrophic Beijerinckiaceae – Methylocella silvestris, M. tundra,

M. palustris, and Methylocapsa acidiphila, and (c) eight members of the

Methylococcaceae – Methylococcus capsulatus Bath, Methylocaldum sp.

E10a, Methylomonas methanica, M. album, M. rubra, Methylobacter luteus,

Methylobacter sp. 5FB, and Methylomicrobium sp. For the Methylo-

coccaceae, there are insufficient mxaF sequences in GenBank,

Table 1. PCR Primers sets used in this study.

Name Sequence (59 R 39) Reference

F1003 GCGGCACCAACTGGGGCTGGT 33

R1561 GGGAGCCCTCCATGCTGCCC 33

F1003degen GGNCANACYTGGGGNTGGT This study

R1561degen GGGARCCNTTYATGCTNCCN This study

doi:10.1371/journal.pone.0056993.t001

MxaF as BioMarker for Methanotrophic Bacteria

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e56993



hence the mxaF of Methylomicrobium album str. BG8 (GenBank

Accession no. L33682) was matched to the 16S rRNA gene

sequence of Methylomicrobium sp. (GenBank Accession no. D89279).

Separate ML phylogenetic analyses were conducted on three

datasets: (a) mxaF gene sequences (,513 bp) of these methano-

trophs, (b) the corresponding 16S rRNA gene sequences

(,1471 bp) of the same taxa and (c) the concatenated mxaF and

16S rRNA gene sequences (,1984 bp).
(b) Phylogenetic analyses of cultured methanotrophs and

other related methylotrophs. Maximum parsimony (MP)

phylogenies of known methylotrophs (including methanotrophs),

and related xoxF PQQ-linked dehydrogenase genes, which have

recently been described [32] and were included to verify their

phylogenetic placement relative to mxaF genes, were constructed

based on nucleotide and on inferred amino acid sequences

(n = 145) available in Genbank [35]. Alignments for mxaF

nucleotide sequences included sequences with and without third

nucleotide positions. Phylogenetic analyses (MP) implemented

included alignments for mxaF nucleotide sequences with and

without third nucleotides to assess third codon position bias) and

inferred mxaF amino acid sequences (513, 342, and 171 characters,

respectively) for 145 taxa. The resulting tree was obtained via

random stepwise addition of sequences, as consensus of 9 saved,

most parsimonious trees, obtained from a heuristic search.

Phylogenetic Analyses of Environmental mxaF Gene
Sequences

All environmental mxaF nucleotide sequences detected in this

study were verified through BLAST searches, and mxaF nucleotide

sequences of their closest relatives (identified through BLAST

searches) were included in the assembly. The final alignments for

mxaF nucleotide sequences, mxaF sequences without third nucle-

otides and inferred mxaF amino acid sequences comprised 513,

342, and 171 characters, respectively, for 85 taxa. Maximum

parsimony (MP) methods (implemented as described above) were

used to generate phylogenetic trees from the nucleotide align-

ments. The resulting tree was obtained as consensus of 4 saved,

most parsimonious trees obtained from a heuristic search, with

random stepwise addition of sequences.

Nucleotide Sequence Accession Numbers
The mxaF gene nucleotide and inferred amino acid sequences of

Methylomonas rubra and Methylobacter luteus, HBHA isolates 1 and 2,

and uncultured clones have been deposited in GenBank, under

accession numbers JX312966-JX313018.

Results

Congruency Tests
Congruency tests showed that the mxaF and 16S rRNA genes of

representative methanotroph species do not share congruent tree

topologies. Topology tests failed to reject the null hypothesis that

mxaF and 16S rRNA gene trees, when each was constrained to

match the topology of the other gene, have significantly different

likelihood scores. The SH test examines the topology, but does not

indicate specific nodes or taxa causing incongruence [47]. Trees

for mxaF gene, 16S rRNA gene, and combined mxaF+16S rRNA

genes were observed to be incongruent, with incongruencies for

representative taxa from the Methylocystaceae and Methylococ-

caceae, and the methanotrophic Beijerinckiaceae (Fig. 1).

mxaF Gene Phylogeny
The simplified mxaF gene tree (based on all codon positions) for

known proteobacterial methylotrophs is shown in Fig. 2. Trees

resulting from analyses of 1st and 2nd codon positions and inferred

mxaF amino acid sequences of methylotrophs were identical in

branching order of major taxa (not shown). Figure 2 indicates five

distinct clusters of methylotrophs: (a) cluster 1 encompassing the

Methylocystaceae, (b) cluster 2 containing mostly methylotrophic

Methylobacterium sp. and methanotrophic Beijerinckiaceae (Methylo-

capsa and Methylocella), (c) cluster 3 containing mostly Hyphomicro-

bium sp., (d) cluster 4 consisting solely of the monophyletic family

Methylococcaceae, including sequences obtained in this study for

the cultured members Methylomonas rubra and Methylobacter luteus,

and (e) cluster 5 containing betaproteobacterial methylotroph

genera. In addition, a well-supported monophyletic cluster 6 falls

outside of other mxaF clusters and consists of xoxF gene sequences,

which are distantly related to methylotroph mxaF sequences [32].

The list of taxa comprising the non-methanotrophic methylo-

trophs and xoxF/xoxF-like clusters in Fig. 2 is shown in Table 2.

The complete tree with all taxa (n = 145) is shown in Supplement

S1.

Cluster 1 includes all members of the Methylocystaceae,

forming two separate sub-clusters. Both sub-clusters are polyphy-

letic for the two genera Methylosinus and Methylocystis. The

methanotrophic Beijerinckiaceae (genera Methylocapsa, Methylocella

and Methyloferula) are placed polyphyletically within cluster 2 with

other methylotrophs (Fig. 2). There is a lack of distinction in the

placement of species of methanotrophic Beijerinckiaceae in cluster

2: Methylocapsa is most closely related to the non-methanotrophic

genus Acidomonas [48], while the close relatives Methylocella palustris

strain K and Methylocella tundrae cluster with the methylotrophic

Methylorosula polaris, gen. nov. Yu-22 and V-22 [49], Methylocella

silvestris clusters with the non-methanotrophs, Beijerinckia mobilis

DSM 2326, and Methyloferula stellata clusters with the methylo-

trophic Methylovirgula ligni strains BW863 and BW872 [50]. Based

on the mxaF gene tree (Fig. 2), the alphaproteobacterial groups –

the Methylocystaceae (cluster 1), alphaproteobacterial methylo-

trophs including the methanotrophic Beijerinckiaceae (clusters 2

and 3) – are more closely related to one another than to

betaproteobacterial methylotrophs (cluster 5) and gammaproteo-

bacterial methanotrophs (cluster 4). This pattern is also reflected in

the 16S rDNA phylogeny.

Pairwise nucleotide sequence variations within the families

Methylocystaceae and Methylococcaceae and between methano-

trophic Beijerinckiaceae were $87%, $75%, and $78%,

respectively. In contrast, the xoxF cluster shared #69% identity

with all mxaF genes, and Solibacter usitatus Ellin 6076 ADH

(outgroup) shared #55% identity with all mxaF genes.

Phylogenetic Analyses of PCR-amplified Environmental
mxaF Gene Sequences

All inferred amino acid sequences translated from mxaF genes

amplified in this study possessed the three amino acid residues

involved in the interactions of the active site. MP phylogenetic

trees based on all nucleotides, 1st and 2nd codon positions, and

mxaF amino acid sequences were identical in topology; the tree

based on all three nucleotides is shown in Fig. 3. Of the mxaF

clones amplified from Harvard Forest soils (labeled P_C, P_F, and

H_F), one was placed in the Methylocystaceae and five were

placed in the Methylococcaceae, with the remaining three

(P_F#1;#2;#3;#6;#10, P_F#4, and P_F#5) closely related to

environmental clones detected in other soils. Three sequences

detected in Sphagnum moss (labeled Sphag, Fig. 3) clustered with

the methylotroph Methylorhabdus multivorans, although this clade

lacked bootstrap support. Of the four sequences detected in peat

(labeled Peat) in the northern WI bog, one (Peat#4) clustered with

mxaF sequences from clones detected in acidic forest and acidic

MxaF as BioMarker for Methanotrophic Bacteria
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Figure 1. Congruency tests between mxaF and 16S rRNA gene nucleotide sequences of methanotrophs from GenBank database.
Phylogenetic trees for congruency tests based on maximum likelihood (ML) analysis of mxaF (,513 bp) and 16S rRNA gene nucleotide sequences
(,1471 bp) from methanotrophs in GenBank, including the mxaF nucleotide sequences of Methylomonas rubra and Methylobacter luteus sequenced
in this study. The ADH gene of Solibacter usitatus Ellin 6076 was used as outgroup. Methanotrophs (in the Methylococcaceae, Methylocystaceae and
Beijerinckiaceae) are indicated by shaded clusters. Accession numbers of mxaF and 16S rRNA gene sequences downloaded from GenBank are
indicated in parentheses. Bootstrap values from 1,000 replicates are indicated at the nodes of branches (if .50). The scale bar represents the number
of nucleotide changes.
doi:10.1371/journal.pone.0056993.g001
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Figure 2. Simplified phylogenetic tree of methanotrophs and their close relatives based on mxaF nucleotide sequences from
GenBank database. Unrooted phylogenetic tree based on maximum parsimony (MP) analysis of known proteobacterial partial mxaF and xoxF/
xoxF-like nucleotide sequences (,513 bp) from GenBank and the mxaF nucleotide sequences (in bold) of Methylomonas rubra and Methylobacter
luteus sequenced in this study. The ADH gene of Solibacter usitatus Ellin 6076 was used as outgroup. Accession numbers of sequences downloaded
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peatland soils, and one was most close-related to Methylocapsa

acidiphila str. BL2, isolated from acidic peat in Siberia [51]. Both of

the lake isolates were placed in the Methylococcaceae, with

HBHA isolate 1 most closely related to Methylomonas rubra and

HBHA isolate 2 related to Methylobacter tundripaludum SV96 and

clone LW-mxaF-33 (Fig. 3).

For the bathymodiolid mussels, three clones per gill were

sequenced from a total of nine individuals (three per site)

representing two host species: B. azoricus [at Lucky Strike (LS)

and Rainbow (RB) vent sites] and B. puteoserpentis (at Logatchev

(LO) vent site] (27 total clones sequenced). Seven unique

sequences were detected among the 18 B. azoricus clones, and five

unique sequences were detected among 9 B. puteoserpentis clones. Of

the 7 unique sequences detected in B. azoricus, 2 were from RB

vent site, 4 were from LS vent site, and one was from both RB and

LS sites (Fig. 3). These 12 unique sequences vary from one another

at up to 27 synonymous nucleotide positions (coding for the same

amino acid residues) and 6 nonsynonymous nucleotide positions

(coding for different amino acid residues) (see Supplement S1 for

details). These mxaF gene sequences, which possessed all three

amino acid residues involved in the active site of the enzyme, were

amplified from all of the mussel specimens. In congruence with

16S rRNA gene phylogenies for the methanotrophic Bathymodiolus

endosymbionts, the mussel mxaF sequences clustered within the

Methylococacceae. The tight clustering of these mxaF sequences of

two different Bathymodiolus species from sites .2600 km apart,

argues that these were amplified from the symbionts. Thus, we

refer to the origin of the sequences as ‘‘putative’’ symbiont mxaF

sequences. Most mussels (except B. azoricus LS13, B. azoricus LS17,

and B. puteoserpentis LO12) possessed more than one unique mxaF

sequence. While we cannot exclude the possibility of PCR error as

the cause of sequence variance, mussel-derived mxaF sequences

formed two closely related but independent monophyletic clades,

separated according to host species, with the B. azoricus cluster

from LS+RB sharing $99% nucleotide identity and the cluster

from B. puteoserpentis (at LO) sharing $98% nucleotide identity.

Nucleotide identity between sequences from both clusters is 95–

96%. All 12 unique putative endosymbiont mxaF gene sequences

are most closely related (87–88% nucleotide identity) to a free-

living methanotrophic bacterium, SF-BR, isolated from San

Francisco Bay, CA [52] (Fig. 3). When nucleotide variations were

compared with the inferred amino acid residues, 9 of the mxaF

gene sequences varied from one another at up to 27 synonymous

sites and coded for the same inferred amino acid sequence. The

remaining 3 sequences LS27#1, LS28#2, and RB10#1,

possessed the 20 or more synonymous sites identical with

sequences from RB and LS, but possessed, additionally, 1–3

nonsynonymous changes, coding for up to 3 other unique amino

acid sequences (see Supplement S1). Our analysis of mxaF genes

suggests that the putative endosymbionts of B. azoricus and

B. puteoserpentis arose from a single free-living ancestor in the

Methylococcaceae. Calculated Ka/Ks (ratio of rate of nonsynon-

ymous substitutions to synonymous substitutions) values for all

Bathymodiolid putative endosymbionts, all free-living members of

Methylococcaceae and between all putative Bathymodiolid

endosymbionts compared to members of Methylococcaceae,

averaged 2.061022, and did not differ significantly among these

groups (P.0.05, unpaired one-tailed t-test+ANOVA) (data not

shown). These uniformly low Ka/Ks values among all members of

the Methylococcaceae (whether putatively symbiotic or free-living)

indicate that most nucleotide substitutions are synonymous (see

Supplement S1). If random errors in nucleotide incorporation

during PCR had occurred, calculated Ka/Ks values for mxaF

genes of the putative endosymbionts would likely have been

significantly higher (i.e., approaching 1).

Discussion

Establishing the link between microbial phylogeny and physi-

ology is complicated by the high level of physiological diversity in

most microbial taxa (e.g., many microbes utilizing several carbon

sources), and the potential for horizontal gene transfers – the

movement of microbial genes between divergent genomes.

Consequently, it is necessary to evaluate the accuracy of candidate

functional genes as a diagnostic of key metabolic processes, as well

as being accurate markers of evolutionary history. Doing so

requires evaluating the result of phylogenetic reconstruction of

gene sequences from all cultured organisms possessing the gene,

before analyses of sequences from uncultured environmental

clones. Methanotrophs are unique due to their preference for

methane as a metabolic substrate and their possession of functional

genes involved in this process. Here, we investigated the

phylogeny, based on the mxaF gene, of all known proteobacterial

methanotrophs from GenBank database and highlighted the mxaF

gene’s ability to detect most methanotrophic bacteria and describe

their molecular diversity in natural environments.

mxaF and 16S rRNA Gene Phylogenies
In this study, the topological differences between 16S rRNA and

mxaF gene trees, as seen in incongruencies between both trees

(Fig. 1), suggest multiple occurrences of horizontal gene transfer in

the mxaF genes of many methanotrophic taxa in the Methylo-

coccaceae, Methylocystaceae, and Beijerinckiacea. Phylogenetic

analyses based on mxaF genes placed the vast majority of cultivated

proteobacterial methanotrophs, excluding members of the genera

Methylocapsa, Methylocella, and Methyloferula, in distinct and coherent

clades representing the Methylococcaceae and Methylocystaceae,

with higher nucleotide identity between taxa within these clades

than between members of different clades. These family-level

clade distinctions are consistent with patterns evident in the 16S

rDNA phylogeny. However, below the family level, mxaF-based

analyses failed to differentiate between distinct subclades based on

genera.

The mxaF gene has poor resolving power for methanotrophs

within the Beijerinckiaceae. Our mxaF gene tree (Fig. 2) indicates

that these methanotrophs, composed of the genera Methylocapsa,

Methylocella, and Methyloferula, are polyphyletic, sharing common

ancestry with other alphaproteobacterial methylotrophs. This

pattern corroborates previous studies, which assessed fewer

methylotroph taxa [23,49,53], and showed different topologies

between mxaF and 16S rRNA genes, for example, in the genus

Methylocella [22,50,53]. The more extensive mxaF gene phylogeny

inferred here (compared to previous studies) suggests that

from GenBank are indicated in parentheses. Bootstrap values from 1,000 replicates are indicated at the nodes of branches (if .50). The three bacterial
families containing methanotrophs (Methylococcaceae, Methylocystaceae and methanotrophic members of the Beijerinckiaceae) are indicated by
shaded clusters and the other alphaproteobacterial and betaproteobacterial methylotrophs are delineated by lines. The identity of mxaF and mxaF-
like sequences from the ‘‘Methylobacterium cluster (within cluster 2)’’, ‘‘Mainly Hyphomicrobium (Cluster 3)’’, ‘‘b-proteobacterial methylotrophs (Cluster
5)’’, and ‘‘xoxF/xoxF-like genes’’ is shown in Table 2. The scale bar represents the number of nucleotide changes. The complete phylogenetic tree of
methanotrophs and their close relatives based on mxaF nucleotide sequences is shown in Supplement S1.
doi:10.1371/journal.pone.0056993.g002
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methanotrophy (a) arose once in the Beijerinckiaceae and was lost

by some methylotrophic taxa, (b) arose separately in more than

one taxon in the Beijerinckiaceae, and/or (c) multiple occurrences

of horizontal gene transfers have occurred in the common ancestor

Table 2. Taxa included (but not shown) in the phylogenetic analyses for Fig. 2.

Cluster name Taxa and GenBank Accession number (in parentheses)

Methylobacterium cluster
(within cluster 2)

Methylobacterium nodulans strain ORS2060 (AF220764)
Methylobacterium aquaticum DSM1371 (EF562464)
Methylobacterium sp. MP3 (EF030549)
Methylobacterium lusitanum strain MP2 (EF030548)
Methylobacterium rhodesianum strain DSM5687 (EF562473)
Methylobacterium hispanicum strain DSM16372 (EF562468)
Methylobacterium jeotgali strain S2R03-9 (EF031552)
Methylobacterium sp. MPS (EU047511)
Methylobacterium mesophilicum strain DSM1708 (EF562470)
Methylobacterium organophilum DSM760 (EF562471)
Methylobacterium radiotolerans JCM2831 1819 (EF562472)
Methylobacterium fujisawaense strain KACC10744 (EF562467)
Methylobacterium oryzae strain CBMB20 (EF562478)
Methylobacterium fujisawaense strain MP1 (EF030547)
Methylobacterium oryzae strain CBMB110 (EF562476)
Methylobacterium suomiense strain KCTC12963 (EF562474)
Methylobacterium suomiense strain CBMB130 (EF562479)
Methylobacterium suomiense strain CBMB120 (EF562477)
Methylobacterium thiocyanatum strain DSM11490 (EF562475)
Afipia felis strain 25E-1 (AY8488 26)
Afipia felis strain RD1 (AY848827)
Methylobacterium podarium strain FM4 (AY468366)
Methylobacterium extorquens strain DSM1337 (EF562466)
Methylobacterium dichloromethanicum strain DSM6343 (AJ878068)
Methylobacterium dichloromethanicum strain KACC11438 (EF562465)
Methylobacterium rhodinum strain DSM2163 (EF562487)

Mainly Hyphomicrobium
(Cluster 3)

Hyphomicrobium sp. strain B 314 (HSMXAF314)
Hyphomicrobium sp. strain B 327 (HSMXAF327)
Hyphomicrobium sp. strain DPB 2c (HSMXAF2C)
Hyphomicrobium aestuarii (HAMXAF)
Hyphomicrobium sp. strain B 583 (HSMXAF583)
Hyphomicrobium sp. strain B 520 (HSMXAF520)
Hyphomicrobium sp. strain B 294 (HSMXAF294)
Hyphomicrobium sp. strain P 324 (HSMXAF324)
Hyphomicrobium zavarzinii (HZMXAF)
Hyphomicrobium sp. strain B 69 (HSMXAF69)
Hyphomicrobium vulgare (HVMXAF)
Hyphomicrobium sp. strain P 768 (HSMXAF768)
Hyphomicrobium sp. strain P 495 (HSMXAF495 )
Hyphomicrobium methylovorum (AM004097)
Hyphomicrobium sp. P 495 (HSMXAF495)
Hyphomicrobium sp. P 768 (HSMXAF768)
Hansschlegelia plantiphila strain S1 (DQ652143)
Hansschlegelia plantiphila strain S2 (DQ652144)
Hansschlegelia plantiphila strain S4 (DQ652145)
Paracoccus kondratievae NCIMB 13773 (AJ878072)
Methylosulfonomonas methylovora (MMU70525)
Ancylobacter aquaticus strain IAM 12364 (AB455976)
Albibacter methylovorans DSM 13819 (AJ878069)
Methylopila capsulata ATCC 700716 (AJ878071)

b-proteobacterial Methylotrophs
(Cluster 5)

Flavisobacter sp. Vu-144 (EU912489)
Duganella sp. B41 (EU439303)
Methylophilus methylotrophus (MMU41040)
Methylobacillus glycogens ATCC29475 (AJ878073)
Methylovorus sp. SS1 (AF184915)

xoxF/xoxF-like genes Paracoccus denitrificans (U34346)
Rhodobacter sphaeroides 2.4.1 (CP000143)
Methylobacterium radiotolerans JCM 2831 Mrad 2831 1932 (NC_010505)
Methyloversatilis universalis strain FAM5 (EU548068)
Burkholderiales bacterium RZ18-153 (EU548065)
Methylobacterium extorquens PA1 Mext_1809 (NC_010172)
Methylobacterium chloromethanicum CM4 Mchl2145 (NC_011757)
Methylobacterium extorquens AM1 MexAM1 META1p1740 (NC_012808)
Methylobacterium sp. 4–46 M446 5752 (NC_010511)
Methylobacterium radiotolerans JCM 2831 Mrad 2831 0508 (NC_010505)
Methylobacterium sp. 4–46 M446 2082 (NC_010511)

doi:10.1371/journal.pone.0056993.t002
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of methanotrophic Beijerinckiaceae. It therefore is difficult to

ascertain whether microorganisms with mxaF gene sequences

placed near the polyphyletic Beijerinckiaceae genera Methylocapsa,

Methylocella, and Methyloferula are indeed methanotrophic.

Overall, our data suggest that the partial mxaF gene (,550 bp)

amplified by the primer set mentioned is a useful phylogenetic

marker and provides sufficient resolution to broadly discriminate

between known proteobacterial methanotroph families via the

Methylococcaceae and Methylocystaceae clusters, which together

encompass the vast majority of known methanotrophs. However,

it has poor resolution at the sub-family level across the

Methylococcaceae (not shown in previous studies) and Methylo-

cystaceae, and ambiguities exist between the methanotrophic

Beijerinckiaceae and other methylotrophs in the Alphaproteobac-

teria, due possibly to horizontal transfers of the mxaF gene.

mxaF Sequences from Diverse Environments, Isolates
and Endosymbiotic Methanotrophs

The mxaF gene was used here to examine the phylogenetic

placement and diversity of over fifty novel sequences of putative

methanotrophs from a range of natural environments and from

cultured isolates in light of evolutionary information from the

mxaF gene phylogeny determined above. The mxaF datasets

from Harvard Forest soil, peat and Sphagnum moss from

northern Wisconsin, and the HBHA water column contained

diverse sequences that clustered primarily in the Methylococca-

ceae and Methylocystaceae, as well as sequences related to

methanotrophic Beijerinckiaceae and other alphaproteobacterial

methylotrophs. Notably, the sample of Sphagnum moss contained

three sequences (Sphag#1, Sphag#2, and Sphag#3), suggestive

of three strains, most closely related to the methylotroph

Methylorhabdus multivorans. However, these three sequences are

also closely related to the methanotrophic Beijerinckiaceae

genus Methylocella (Fig. 3). Given the uncertainty with which

mxaF discriminates between methanotrophic Beijerinckiaceae

and certain alphaproteobacterial methylotrophs discussed above,

the sequences detected in peat, forest soils and Sphagnum moss

could represent methanotrophic bacteria.

Our analyses also provide the first insights into the phylogenetic

placement and biogeography of the previously unknown mxaF

genes from putative methanotrophic endosymbionts of deep-sea

hydrothermal vent Bathymodiolid mussels. Bathymodiolus azoricus

and B. puteoserpentis are the dominant species of mussels within the

two spatially separate mussel hybrid zones of Lucky Strike and

Rainbow, and Logatchev on the Mid-Atlantic Ridge [54]. Here,

dual bacterial endosymbionts provide nutrition to the mussel hosts

through thiotrophy and methanotrophy, but the mode of

methanotrophic symbiont transmission, whether vertical (symbi-

onts are passed from parent to offspring) or horizontal (symbionts

are taken up from the environment, or from co-occurring hosts) is

not known [38,39,55,56]. Here, we show that these novel mxaF

gene sequences of putative endosymbiotic methanotrophs belong

to the Methylococcaceae, in agreement with their placement in the

Gammaproteobacteria with other methanotrophs based on 16S

rDNA phylogeny [6]. B. azoricus mussels at the adjacent Lucky

Strike and Rainbow vent sites harbored closely related putative

methanotrophic symbionts, with most mussels possessing a

heterogeneous population of putative endosymbionts, based on

the closely-related but unique mxaF gene sequences we detected.

This result is consistent with the hypothesis of environmental

acquisition of mussel symbionts [38,55,57,58], where each mussel

may be expected to contain multiple genetic variants.

In contrast, B. puteoserpentis mussels at Logatchev, a vent site

over 2600 km away, harbored a separate monophyletic group of

closely related putative methanotrophic symbionts. The phylo-

genetic clustering of B. azoricus and B. puteoserpentis symbionts in

two distinct clades suggests either taxon-specific differences in

the specificity of the symbiont-host relationship (i.e., each host

species associates with a unique symbiont strain) or that B.

azoricus mussels at Lucky Strike and Rainbow acquire putative

symbionts from an environmental pool that is genetically

distinct from that available to B. puteoserpentis mussels at

Logatchev vent site. Our phylogenetic analyses of mxaF gene

sequences indicate that the putative endosymbiotic methano-

trophs have diverged from an ancestral sequence into two

monophyletic groups, either in response to host-symbiont co-

speciation or to geographic separation. Indeed, the fragmented

distribution of deep-sea hydrothermal vents may promote spatial

isolation that acts as a barrier to symbiont dispersal [59]. With

more information, the extent to which symbiont diversification

is driven by either geographic isolation and symbiont-host

specificity and co-evolution, can be assessed.

Proteobacterial methanotrophs currently constitute the vast

majority of known aerobic methane oxidizing bacteria. In this

study, we demonstrate the usefulness of the mxaF gene in studying

proteobacterial methanotroph diversity in non-anoxic environ-

ments. Studying the evolutionary history of this gene from known

methanotrophs extensively may provide insights into the place-

ment of novel taxa detected in different environments and avoid

incorrect inferences from their phylogenetic placement. Our

results indicate the mxaF gene can be a functional and phylogenetic

marker for proteobacterial methanotrophs, providing more

information about an important group of microorganisms involved

in the global biogeochemical methane cycle.
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