11 research outputs found

    Unified Homogenization Theory for Magnetoinductive and Electromagnetic Waves in Split Ring Metamaterials

    Full text link
    A unified homogenization procedure for split ring metamaterials taking into account time and spatial dispersion is introduced. The procedure is based on two coupled systems of equations. The first one comes from an approximation of the metamaterial as a cubic arrangement of coupled LC circuits, giving the relation between currents and local magnetic field. The second equation comes from macroscopic Maxwell equations, and gives the relation between the macroscopic magnetic field and the average magnetization of the metamaterial. It is shown that electromagnetic and magnetoinductive waves propagating in the metamaterial are obtained from this analysis. Therefore, the proposed time and spatially dispersive permeability accounts for the characterization of the complete spectrum of waves of the metamaterial. Finally, it is shown that the proposed theory is in good quantitative and qualitative agreement with full wave simulations.Comment: 4 pages, 3 figure

    The HITRAN2020 molecular spectroscopic database

    Get PDF
    The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition

    Molecular dynamics simulation of poly(3-hexylthiophene) helical structure in vacuo and in amorphous polymer surrounding

    No full text
    The stability of poly(3-hexylthiophene) (P3HT) helical structure has been investigated in vacuo and in amorphous polymer surrounding via molecular dynamics-based simulations at temperatures below and above the P3HT melting point. The results show that the helical chain remains stable at room temperature both in vacuo and in amorphous surrounding, and promptly loses its structure at elevated temperatures. However, the amorphous surrounding inhibits the destruction of the helix at higher temperatures. In addition, it is shown that the electrostatic interactions do not significantly affect the stability of the helical structur

    The HITRAN 2012 Molecular Spectroscopic Database

    Get PDF
    This paper describes the status of the latest edition of the HITRAN molecular spectroscopic compilation. The new edition is meant to replace the previous HITRAN edition of 2008 and its updates during the intervening years. The HITRAN molecular absorption compilation is comprised of six major components structured into folders that are freely accessible on the internet. These folders consist of the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, ultraviolet spectroscopic parameters, aerosol indices of refraction, collision-induced absorption data, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, and validity. Molecules and isotopologues have been added that address the issues of atmospheres beyond the Earth. Also discussed is a new initiative that casts HITRAN into a relational database format that offers many advantages over the long-standing sequential text-based structure that has existed since the initial release of HITRAN in the early 1970s

    Generalized Gaussian Structures: Models for Polymer Systems with ComplexTopologies

    No full text
    corecore