11 research outputs found

    The influence of strong magnetic field on photon-neutrino reactions

    Full text link
    The two-photon two-neutrino interaction induced by magnetic field is investigated. In particular the processes γγ→ννˉ\gamma \gamma \to \nu \bar \nu and γ→γννˉ\gamma \to \gamma \nu \bar \nu are studied in the presence of strong magnetic field. An effective Lagrangian and partial amplitudes of the processes are presented. Neutrino emissivities due to the reactions γγ→ννˉ\gamma \gamma \to \nu \bar \nu and γ→γννˉ\gamma \to \gamma \nu \bar \nu are calculated taking into account of the photon dispersion and large radiative corrections. A comparison of the results obtained with previous estimations and another inducing mechanisms of the processes under consideration is made.Comment: 16 pages, LATEX, 3 EPS figures, based on the talk presented at XXXI ITEP Winter School of Physics, Moscow, Russia, February 18 - 26, 200

    45S rDNA external transcribed spacer organization reveals new phylogenetic relationships in Avena genus

    Get PDF
    Research ArticleThe genus Avena comprises four distinct genomes organized in diploid (AA or CC), tetraploid (AABB or AACC) and hexaploid species (AACCDD), constituting an interesting model for phylogenetic analysis. The aim of this work was to characterize 45S rDNA intergenic spacer (IGS) variability in distinct species representative of Avena genome diversity±A. strigosa (AA), A. ventricosa (CvCv), A. eriantha (CpCp), A. barbata (AABB), A. murphyi (AACC), A. sativa (AACCDD) and A. sterilis (AACCDD) through the assessment of the 5' external transcribed spacer (5'-ETS), a promising IGS region for phylogenetic studies poorly studied in Avena genus. In this work, IGS length polymorphisms were detected mainly due to distinct 5'-ETS sequence types resulting from major differences in the number and organization of repeated motifs. Although species with A genome revealed a 5'-ETS organization (A-organization) similar to the one previously described in A. sativa, a distinct organization was unraveled in C genome diploid species (C-organization). Interestingly, such new organization presents a higher similarity with other Poaceae species than A-genome sequences, supporting the hypothesis of C-genome being the ancestral Avena genome. Additionally, polyploid species with both genomes mainly retain the A-genome 5'-ETS organization, confirming the preferential elimination of C-genome sequences in Avena polyploid species. Moreover, 5'-ETS sequences phylogenetic analysis consistently clustered the species studied according to ploidy and genomic constitution supporting the use of ribosomal genes to highlight Avena species evolutive pathways.info:eu-repo/semantics/publishedVersio

    The S N H -Amination of Heteroaromatic Compounds

    No full text
    corecore