27 research outputs found

    MicroRNA-Restricted Transgene Expression in the Retina

    Get PDF
    Background: Gene transfer using adeno-associated viral (AAV) vectors has been successfully applied in the retina for the treatment of inherited retinal dystrophies. Recently, microRNAs have been exploited to fine-tune transgene expression improving therapeutic outcomes. Here we evaluated the ability of retinal-expressed microRNAs to restrict AAV-mediated transgene expression to specific retinal cell types that represent the main targets of common inherited blinding conditions. Methodology/Principal Findings: To this end, we generated AAV2/5 vectors expressing EGFP and containing four tandem copies of miR-124 or miR-204 complementary sequences in the 39UTR of the transgene expression cassette. These vectors were administered subretinally to adult C57BL/6 mice and Large White pigs. Our results demonstrate that miR-124 and miR-204 target sequences can efficiently restrict AAV2/5-mediated transgene expression to retinal pigment epithelium and photoreceptors, respectively, in mice and pigs. Interestingly, transgene restriction was observed at low vector doses relevant to therapy. Conclusions: We conclude that microRNA-mediated regulation of transgene expression can be applied in the retina to either restrict to a specific cell type the robust expression obtained using ubiquitous promoters or to provide an additiona

    Conformational Control of the Binding of the Transactivation Domain of the MLL Protein and c-Myb to the KIX Domain of CREB

    Get PDF
    The KIX domain of CBP is a transcriptional coactivator. Concomitant binding to the activation domain of proto-oncogene protein c-Myb and the transactivation domain of the trithorax group protein mixed lineage leukemia (MLL) transcription factor lead to the biologically active ternary MLL∶KIX∶c-Myb complex which plays a role in Pol II-mediated transcription. The binding of the activation domain of MLL to KIX enhances c-Myb binding. Here we carried out molecular dynamics (MD) simulations for the MLL∶KIX∶c-Myb ternary complex, its binary components and KIX with the goal of providing a mechanistic explanation for the experimental observations. The dynamic behavior revealed that the MLL binding site is allosterically coupled to the c-Myb binding site. MLL binding redistributes the conformational ensemble of KIX, leading to higher populations of states which favor c-Myb binding. The key element in the allosteric communication pathways is the KIX loop, which acts as a control mechanism to enhance subsequent binding events. We tested this conclusion by in silico mutations of loop residues in the KIX∶MLL complex and by comparing wild type and mutant dynamics through MD simulations. The loop assumed MLL binding conformation similar to that observed in the KIX∶c-Myb state which disfavors the allosteric network. The coupling with c-Myb binding site faded, abolishing the positive cooperativity observed in the presence of MLL. Our major conclusion is that by eliciting a loop-mediated allosteric switch between the different states following the binding events, transcriptional activation can be regulated. The KIX system presents an example how nature makes use of conformational control in higher level regulation of transcriptional activity and thus cellular events

    Encoding optical control in LCK kinase to quantitatively investigate its activity in live cells.

    Get PDF
    LCK is a tyrosine kinase that is essential for initiating T-cell antigen receptor (TCR) signaling. A complete understanding of LCK function is constrained by a paucity of methods to quantitatively study its function within live cells. To address this limitation, we generated LCK*, in which a key active-site lysine is replaced by a photocaged equivalent, using genetic code expansion. This strategy enabled fine temporal and spatial control over kinase activity, thus allowing us to quantify phosphorylation kinetics in situ using biochemical and imaging approaches. We find that autophosphorylation of the LCK active-site loop is indispensable for its catalytic activity and that LCK can stimulate its own activation by adopting a more open conformation, which can be modulated by point mutations. We then show that CD4 and CD8, T-cell coreceptors, can enhance LCK activity, thereby helping to explain their effect in physiological TCR signaling. Our approach also provides general insights into SRC-family kinase dynamics

    Rapid allosteric activation

    No full text
    corecore