130 research outputs found

    Introduction to Configuration Path Integral Monte Carlo

    Full text link
    In low-temperature high-density plasmas quantum effects of the electrons are becoming increasingly important. This requires the development of new theoretical and computational tools. Quantum Monte Carlo methods are among the most successful approaches to first-principle simulations of many-body quantum systems. In this chapter we present a recently developed method---the configuration path integral Monte Carlo (CPIMC) method for moderately coupled, highly degenerate fermions at finite temperatures. It is based on the second quantization representation of the NN-particle density operator in a basis of (anti-)symmetrized NN-particle states (configurations of occupation numbers) and allows to tread arbitrary pair interactions in a continuous space. We give a detailed description of the method and discuss the application to electrons or, more generally, Coulomb-interacting fermions. As a test case we consider a few quantum particles in a one-dimensional harmonic trap. Depending on the coupling parameter (ratio of the interaction energy to kinetic energy), the method strongly reduces the sign problem as compared to direct path integral Monte Carlo (DPIMC) simulations in the regime of strong degeneracy which is of particular importance for dense matter in laser plasmas or compact stars. In order to provide a self-contained introduction, the chapter includes a short introduction to Metropolis Monte Carlo methods and the second quantization of quantum mechanics.Comment: chapter in book "Introduction to Complex Plasmas: Scientific Challenges and Technological Opportunities", Michael Bonitz, K. Becker, J. Lopez and H. Thomsen (Eds.) Springer Series "Atomic, Optical and Plasma Physics", vol. 82, Springer 2014, pp. 153-194 ISBN: 978-3-319-05436-0 (Print) 978-3-319-05437-7 (Online

    Microwave studies of the fractional Josephson effect in HgTe-based Josephson junctions

    Full text link
    The rise of topological phases of matter is strongly connected to their potential to host Majorana bound states, a powerful ingredient in the search for a robust, topologically protected, quantum information processing. In order to produce such states, a method of choice is to induce superconductivity in topological insulators. The engineering of the interplay between superconductivity and the electronic properties of a topological insulator is a challenging task and it is consequently very important to understand the physics of simple superconducting devices such as Josephson junctions, in which new topological properties are expected to emerge. In this article, we review recent experiments investigating topological superconductivity in topological insulators, using microwave excitation and detection techniques. More precisely, we have fabricated and studied topological Josephson junctions made of HgTe weak links in contact with two Al or Nb contacts. In such devices, we have observed two signatures of the fractional Josephson effect, which is expected to emerge from topologically-protected gapless Andreev bound states. We first recall the theoretical background on topological Josephson junctions, then move to the experimental observations. Then, we assess the topological origin of the observed features and conclude with an outlook towards more advanced microwave spectroscopy experiments, currently under development.Comment: Lectures given at the San Sebastian Topological Matter School 2017, published in "Topological Matter. Springer Series in Solid-State Sciences, vol 190. Springer

    Transcriptome Analysis of Epithelial and Stromal Contributions to Mammogenesis in Three Week Prepartum Cows

    Get PDF
    Transcriptome analysis of bovine mammary development has provided insight into regulation of mammogenesis. However, previous studies primarily examined expression of epithelial and stromal tissues combined, and consequently did not account for tissue specific contribution to mammary development. Our objective was to identify differences in gene expression in epithelial and intralobular stromal compartments. Tissue was biopsied from non-lactating dairy cows 3 weeks prepartum, cut into explants and incubated for 2 hr with insulin and hydrocortisone. Epithelial and intralobular stromal tissues were isolated with laser capture microdissection. Global gene expression was measured with Bovine Affymetrix GeneChips, and data were preprocessed using RMA method. Moderated t-tests from gene-specific linear model analysis with cell type as a fixed effect showed more than 3,000 genes were differentially expressed between tissues (P<0.05; FDR<0.17). Analysis of epithelial and stromal transcriptomes using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathways Analysis (IPA) showed that epithelial and stromal cells contributed distinct molecular signatures. Epithelial signatures were enriched with gene sets for protein synthesis, metabolism and secretion. Stromal signatures were enriched with genes that encoded molecules important to signaling, extracellular matrix composition and remodeling. Transcriptome differences also showed evidence for paracrine interactions between tissues in stimulation of IGF1 signaling pathway, stromal reaction, angiogenesis, neurogenesis, and immune response. Molecular signatures point to the dynamic role the stroma plays in prepartum mammogenesis and highlight the importance of examining the roles of cell types within the mammary gland when targeting therapies and studying mechanisms that affect milk production

    Streptococcus uberis strains isolated from the bovine mammary gland evade immune recognition by mammary epithelial cells, but not of macrophages

    Get PDF
    Streptococcus uberis is frequently isolated from the mammary gland of dairy cattle. Infection with some strains can induce mild subclinical inflammation whilst others induce severe inflammation and clinical mastitis. We compared here the inflammatory response of primary cultures of bovine mammary epithelial cells (pbMEC) towards S. uberis strains collected from clinical or subclinical cases (seven strains each) of mastitis with the strong response elicited by Escherichia coli. Neither heat inactivated nor live S. uberis induced the expression of 10 key immune genes (including TNF, IL1B, IL6). The widely used virulent strain 0140J and the avirulent strain, EF20 elicited similar responses; as did mutants defective in capsule (hasA) or biofilm formation (sub0538 and sub0539). Streptococcus uberis failed to activate NF-κB in pbMEC or TLR2 in HEK293 cells, indicating that S. uberis particles did not induce any TLR-signaling in MEC. However, preparations of lipoteichoic acid (LTA) from two strains strongly induced immune gene expression and activated NF-κB in pbMEC, without the involvement of TLR2. The immune-stimulatory LTA must be arranged in the intact S. uberis such that it is unrecognizable by the relevant pathogen receptors of the MEC. The absence of immune recognition is specific for MEC, since the same S. uberis preparations strongly induced immune gene expression and NF-κB activity in the murine macrophage model cell RAW264.7. Hence, the sluggish immune response of MEC and not of professional immune cells to this pathogen may aid establishment of the often encountered belated and subclinical phenotype of S. uberis mastitis

    Allelic Variants of Melanocortin 3 Receptor Gene (MC3R) and Weight Loss in Obesity: A Randomised Trial of Hypo-Energetic High- versus Low-Fat Diets

    Get PDF
    INTRODUCTION: The melanocortin system plays an important role in energy homeostasis. Mice genetically deficient in the melanocortin-3 receptor gene have a normal body weight with increased body fat, mild hypophagia compared to wild-type mice. In humans, Thr6Lys and Val81Ile variants of the melanocortin-3 receptor gene (MC3R) have been associated with childhood obesity, higher BMI Z-score and elevated body fat percentage compared to non-carriers. The aim of this study is to assess the association in adults between allelic variants of MC3R with weight loss induced by energy-restricted diets. SUBJECTS AND METHODS: This research is based on the NUGENOB study, a trial conducted to assess weight loss during a 10-week dietary intervention involving two different hypo-energetic (high-fat and low-fat) diets. A total of 760 obese patients were genotyped for 10 single nucleotide polymorphisms covering the single exon of MC3R gene and its flanking regions, including the missense variants Thr6Lys and Val81Ile. Linear mixed models and haplotype-based analysis were carried out to assess the potential association between genetic polymorphisms and differential weight loss, fat mass loss, waist change and resting energy expenditure changes. RESULTS: No differences in drop-out rate were found by MC3R genotypes. The rs6014646 polymorphism was significantly associated with weight loss using co-dominant (p = 0.04) and dominant models (p = 0.03). These p-values were not statistically significant after strict control for multiple testing. Haplotype-based multivariate analysis using permutations showed that rs3827103-rs1543873 (p = 0.06), rs6014646-rs6024730 (p = 0.05) and rs3746619-rs3827103 (p = 0.10) displayed near-statistical significant results in relation to weight loss. No other significant associations or gene*diet interactions were detected for weight loss, fat mass loss, waist change and resting energy expenditure changes. CONCLUSION: The study provided overall sufficient evidence to support that there is no major effect of genetic variants of MC3R and differential weight loss after a 10-week dietary intervention with hypo-energetic diets in obese Europeans

    Meiotic Chromosome Pairing Is Promoted by Telomere-Led Chromosome Movements Independent of Bouquet Formation

    Get PDF
    Chromosome pairing in meiotic prophase is a prerequisite for the high fidelity of chromosome segregation that haploidizes the genome prior to gamete formation. In the budding yeast Saccharomyces cerevisiae, as in most multicellular eukaryotes, homologous pairing at the cytological level reflects the contemporaneous search for homology at the molecular level, where DNA double-strand broken ends find and interact with templates for repair on homologous chromosomes. Synapsis (synaptonemal complex formation) stabilizes pairing and supports DNA repair. The bouquet stage, where telomeres have formed a transient single cluster early in meiotic prophase, and telomere-promoted rapid meiotic prophase chromosome movements (RPMs) are prominent temporal correlates of pairing and synapsis. The bouquet has long been thought to contribute to the kinetics of pairing, but the individual roles of bouquet and RPMs are difficult to assess because of common dependencies. For example, in budding yeast RPMs and bouquet both require the broadly conserved SUN protein Mps3 as well as Ndj1 and Csm4, which link telomeres to the cytoskeleton through the intact nuclear envelope. We find that mutants in these genes provide a graded series of RPM activity: wild-type>mps3-dCC>mps3-dAR>ndj1Δ>mps3-dNT = csm4Δ. Pairing rates are directly correlated with RPM activity even though only wild-type forms a bouquet, suggesting that RPMs promote homologous pairing directly while the bouquet plays at most a minor role in Saccharomyces cerevisiae. A new collision trap assay demonstrates that RPMs generate homologous and heterologous chromosome collisions in or before the earliest stages of prophase, suggesting that RPMs contribute to pairing by stirring the nuclear contents to aid the recombination-mediated homology search

    Clinical chronobiology: a timely consideration in critical care medicine

    Get PDF
    A fundamental aspect of human physiology is its cyclical nature over a 24-h period, a feature conserved across most life on Earth. Organisms compartmentalise processes with respect to time in order to promote survival, in a manner that mirrors the rotation of the planet and accompanying diurnal cycles of light and darkness. The influence of circadian rhythms can no longer be overlooked in clinical settings; this review provides intensivists with an up-to-date understanding of the burgeoning field of chronobiology, and suggests ways to incorporate these concepts into daily practice to improve patient outcomes. We outline the function of molecular clocks in remote tissues, which adjust cellular and global physiological function according to the time of day, and the potential clinical advantages to keeping in time with them. We highlight the consequences of "chronopathology", when this harmony is lost, and the risk factors for this condition in critically ill patients. We introduce the concept of "chronofitness" as a new target in the treatment of critical illness: preserving the internal synchronisation of clocks in different tissues, as well as external synchronisation with the environment. We describe methods for monitoring circadian rhythms in a clinical setting, and how this technology may be used for identifying optimal time windows for interventions, or to alert the physician to a critical deterioration of circadian rhythmicity. We suggest a chronobiological approach to critical illness, involving multicomponent strategies to promote chronofitness (chronobundles), and further investment in the development of personalised, time-based treatment for critically ill patients

    Natural History of Tuberculosis: Duration and Fatality of Untreated Pulmonary Tuberculosis in HIV Negative Patients: A Systematic Review

    Get PDF
    Background The prognosis, specifically the case fatality and duration, of untreated tuberculosis is important as many patients are not correctly diagnosed and therefore receive inadequate or no treatment. Furthermore, duration and case fatality of tuberculosis are key parameters in interpreting epidemiological data. Methodology and Principal Findings To estimate the duration and case fatality of untreated pulmonary tuberculosis in HIV negative patients we reviewed studies from the pre-chemotherapy era. Untreated smear-positive tuberculosis among HIV negative individuals has a 10-year case fatality variously reported between 53% and 86%, with a weighted mean of 70%. Ten-year case fatality of culture-positive smear-negative tuberculosis was nowhere reported directly but can be indirectly estimated to be approximately 20%. The duration of tuberculosis from onset to cure or death is approximately 3 years and appears to be similar for smear-positive and smear-negative tuberculosis. Conclusions Current models of untreated tuberculosis that assume a total duration of 2 years until self-cure or death underestimate the duration of disease by about one year, but their case fatality estimates of 70% for smear-positive and 20% for culture-positive smear-negative tuberculosis appear to be satisfactory
    corecore