121 research outputs found
Multigrid for propagators of staggered fermions in four-dimensional gauge fields
Multigrid (MG) methods for the computation of propagators of staggered
fermions in non-Abelian gauge fields are discussed. MG could work in principle
in arbitrarily disordered systems. The practical variational MG methods tested
so far with a ``Laplacian choice'' for the restriction operator are not
competitive with the conjugate gradient algorithm on lattices up to .
Numerical results are presented for propagators in gauge fields.Comment: 4 pages, 3 figures (one LaTeX-figure, two figures appended as
encapsulated ps files); Contribution to LATTICE '92, requires espcrc2.st
Idealized Multigrid Algorithm for Staggered Fermions
An idealized multigrid algorithm for the computation of propagators of
staggered fermions is investigated.
Exemplified in four-dimensional gauge fields, it is shown that the
idealized algorithm preserves criticality under coarsening.
The same is not true when the coarse grid operator is defined by the Galerkin
prescription.
Relaxation times in computations of propagators are small, and critical
slowing is strongly reduced (or eliminated) in the idealized algorithm.
Unfortunately, this algorithm is not practical for production runs, but the
investigations presented here answer important questions of principle.Comment: 11 pages, no figures, DESY 93-046; can be formatted with plain LaTeX
article styl
Some Comments on Multigrid Methods for Computing Propagators
I make three conceptual points regarding multigrid methods for computing
propagators in lattice gauge theory: 1) The class of operators handled by the
algorithm must be stable under coarsening. 2) Problems related by symmetry
should have solution methods related by symmetry. 3) It is crucial to
distinguish the vector space from its dual space . All the existing
algorithms violate one or more of these principles.Comment: 16 pages, LaTeX plus subeqnarray.sty (included at end),
NYU-TH-93/07/0
Multigrid Methods in Lattice Field Computations
The multigrid methodology is reviewed. By integrating numerical processes at
all scales of a problem, it seeks to perform various computational tasks at a
cost that rises as slowly as possible as a function of , the number of
degrees of freedom in the problem. Current and potential benefits for lattice
field computations are outlined. They include: solution of Dirac
equations; just operations in updating the solution (upon any local
change of data, including the gauge field); similar efficiency in gauge fixing
and updating; operations in updating the inverse matrix and in
calculating the change in the logarithm of its determinant; operations
per producing each independent configuration in statistical simulations
(eliminating CSD), and, more important, effectively just operations per
each independent measurement (eliminating the volume factor as well). These
potential capabilities have been demonstrated on simple model problems.
Extensions to real life are explored.Comment: 4
D-Theory: Field Theory via Dimensional Reduction of Discrete Variables
A new non-perturbative approach to quantum field theory --- D-theory --- is
proposed, in which continuous classical fields are replaced by discrete
quantized variables which undergo dimensional reduction. The 2-d classical O(3)
model emerges from the (2+1)-d quantum Heisenberg model formulated in terms of
quantum spins. Dimensional reduction is demonstrated explicitly by simulating
correlation lengths up to 350,000 lattice spacings using a loop cluster
algorithm. In the framework of D-theory, gauge theories are formulated in terms
of quantum links --- the gauge analogs of quantum spins. Quantum links are
parallel transporter matrices whose elements are non-commuting operators. They
can be expressed as bilinears of anticommuting fermion constituents. In quantum
link models dimensional reduction to four dimensions occurs, due to the
presence of a 5-d Coulomb phase, whose existence is confirmed by detailed
simulations using standard lattice gauge theory. Using Shamir's variant of
Kaplan's fermion proposal, in quantum link QCD quarks appear as edge states of
a 5-d slab. This naturally protects their chiral symmetries without
fine-tuning. The first efficient cluster algorithm for a gauge theory with a
continuous gauge group is formulated for the U(1) quantum link model. Improved
estimators for Wilson loops are constructed, and dimensional reduction to
ordinary lattice QED is verified numerically.Comment: 15 pages, LaTeX, including 9 encapsulated postscript figures.
Contribution to Lattice 97 by 5 authors, to appear in Nuclear Physics B
(Proceeding Supplements). Requires psfig.tex and espcrc2.st
Measuring the Decorrelation Times of Fourier Modes in Simulations
We describe a method to study the rate at which modes decorrelate in
numerical simulations. We study the XY model updated with the Metropolis and
Wolff dynamics respectively and compute the rate at which each eigenvector of
the dynamics decorrelates. Our method allows us to identify the decorrelation
time for each mode separately. We find that the autocorrelation function of the
various modes is markedly different for the `local' Metropolis compared to the
`non-local' Wolff dynamics. Equipped with this new insight, it may be possible
to devise highly efficient algorithms.Comment: 16 pp (LaTeX), PUPT-1378 , IASSNS-HEP-93/
Effective Field Theories
Effective field theories encode the predictions of a quantum field theory at
low energy. The effective theory has a fairly low ultraviolet cutoff. As a
result, loop corrections are small, at least if the effective action contains a
term which is quadratic in the fields, and physical predictions can be read
straight from the effective Lagrangean.
Methods will be discussed how to compute an effective low energy action from
a given fundamental action, either analytically or numerically, or by a
combination of both methods. Basically,the idea is to integrate out the high
frequency components of fields. This requires the choice of a "blockspin",i.e.
the specification of a low frequency field as a function of the fundamental
fields. These blockspins will be the fields of the effective field theory. The
blockspin need not be a field of the same type as one of the fundamental
fields, and it may be composite. Special features of blockspins in nonabelian
gauge theories will be discussed in some detail.
In analytical work and in multigrid updating schemes one needs interpolation
kernels \A from coarse to fine grid in addition to the averaging kernels
which determines the blockspin. A neural net strategy for finding optimal
kernels is presented.
Numerical methods are applicable to obtain actions of effective theories on
lattices of finite volume. The constraint effective potential) is of particular
interest. In a Higgs model it yields the free energy, considered as a function
of a gauge covariant magnetization. Its shape determines the phase structure of
the theory. Its loop expansion with and without gauge fields can be used to
determine finite size corrections to numerical data.Comment: 45 pages, 9 figs., preprint DESY 92-070 (figs. 3-9 added in ps
format
Screening and Deconfinement of Sources in Finite Temperature SU(2) Lattice Gauge Theory
Deconfinement and screening of higher-representation sources in
finite-temperature lattice gauge theory is investigated by both
analytical and numerical means. The effective Polyakov-line action at strong
coupling is simulated by an efficient cluster-updating Monte Carlo algorithm
for the case of dimensions. The results compare very favourably with
an improved mean-field solution. The limit of the
theory is shown to be highly singular as far as critical behaviour is
concerned. In that limit the leading amplitudes of higher representation
Polyakov lines vanish at strong coupling, and subleading exponents become
dominant. Each of the higher-representation sources then effectively carry with
them their own critical exponents.Comment: 13pages+7figures, CERN-TH-7222/94 One reference added, else unchange
Spectrum of the Dirac Operator and Multigrid Algorithm with Dynamical Staggered Fermions
Complete spectra of the staggered Dirac operator \Dirac are determined in
quenched four-dimensional gauge fields, and also in the presence of
dynamical fermions.
Periodic as well as antiperiodic boundary conditions are used.
An attempt is made to relate the performance of multigrid (MG) and conjugate
gradient (CG) algorithms for propagators with the distribution of the
eigenvalues of~\Dirac.
The convergence of the CG algorithm is determined only by the condition
number~ and by the lattice size.
Since~'s do not vary significantly when quarks become dynamic,
CG convergence in unquenched fields can be predicted from quenched
simulations.
On the other hand, MG convergence is not affected by~ but depends on
the spectrum in a more subtle way.Comment: 19 pages, 8 figures, HUB-IEP-94/12 and KL-TH 19/94; comes as a
uuencoded tar-compressed .ps-fil
An Analytic Result for the Two-Loop Hexagon Wilson Loop in N = 4 SYM
In the planar N=4 supersymmetric Yang-Mills theory, the conformal symmetry
constrains multi-loop n-edged Wilson loops to be basically given in terms of
the one-loop n-edged Wilson loop, augmented, for n greater than 6, by a
function of conformally invariant cross ratios. We identify a class of
kinematics for which the Wilson loop exhibits exact Regge factorisation and
which leave invariant the analytic form of the multi-loop n-edged Wilson loop.
In those kinematics, the analytic result for the Wilson loop is the same as in
general kinematics, although the computation is remarkably simplified with
respect to general kinematics. Using the simplest of those kinematics, we have
performed the first analytic computation of the two-loop six-edged Wilson loop
in general kinematics.Comment: 17 pages. Extended discussion on how the QMRK limit is taken. Version
accepted by JHEP. A text file containing the Mathematica code with the
analytic expression for the 6-point remainder function is include
- …