65 research outputs found

    On the use of periodic photothermal methods for materials diagnosis

    Get PDF
    This work aims the analysis of valuation methods devoted to materials diagnosis in order to provide an efficient estimation in practical operational conditions and environment (by the observation of a thermal tracer representative of a damage). The followed methodology consists in implementing observation techniques based on a periodic photo-thermal excitation so that the observation of the heated structure response allows to identify characteristic parameters of the studied materials. In most cases, simplistic hypotheses required for analytical model validation are not satisfied. Thus, analysis in the frequency domain requires the computing of a specific finite elements method

    Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat

    Get PDF
    Citation: Rutkoski, J., . . . Singh, R. (2016). Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat. G3-Genes Genomes Genetics, 6(9), 2799-2808. https://doi.org/10.1534/g3.116.032888Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial measurements of canopy temperature, and green and red normalized difference vegetation index as secondary traits in pedigree and genomic best linear unbiased prediction models could increase accuracy for grain yield in wheat, Triticum aestivum L., using 557 lines in five environments. Secondary traits on training and test sets, and grain yield on the training set were modeled as multivariate, and compared to univariate models with grain yield on the training set only. Cross validation accuracies were estimated within and across-environment, with and without replication, and with and without correcting for days to heading. We observed that, within environment, with unreplicated secondary trait data, and without correcting for days to heading, secondary traits increased accuracies for grain yield by 56% in pedigree, and 70% in genomic prediction models, on average. Secondary traits increased accuracy slightly more when replicated, and considerably less when models corrected for days to heading. In across-environment prediction, trends were similar but less consistent. These results show that secondary traits measured in high-throughput could be used in pedigree and genomic prediction to improve accuracy. This approach could improve selection in wheat during early stages if validated in early-generation breeding plots

    Wheat quality improvement at CIMMYT and the use of genomic selection on it

    Get PDF
    Citation: Guzman, C., Pena, R. J., Singh, R., Autrique, E., Dreisigacker, S., Crossa, J., . . . Battenfield, S. (2016). Wheat quality improvement at CIMMYT and the use of genomic selection on it. Applied and Translational Genomics, 11, 3-8. https://doi.org/10.1016/j.atg.2016.10.004The International Center for Maize and Wheat Improvement (CIMMYT) leads the Global Wheat Program, whose main objective is to increase the productivity of wheat cropping systems to reduce poverty in developing countries. The priorities of the program are high grain yield, disease resistance, tolerance to abiotic stresses (drought and heat), and desirable quality. The Wheat Chemistry and Quality Laboratory has been continuously evolving to be able to analyze the largest number of samples possible, in the shortest time, at lowest cost, in order to deliver data on diverse quality traits on time to the breeders formaking selections for advancement in the breeding pipeline. The participation of wheat quality analysis/selection is carried out in two stages of the breeding process: evaluation of the parental lines for new crosses and advanced lines in preliminary and elite yield trials. Thousands of lines are analyzed which requires a big investment in resources. Genomic selection has been proposed to assist in selecting for quality and other traits in breeding programs. Genomic selection can predict quantitative traits and is applicable to multiple quantitative traits in a breeding pipeline by attaining historical phenotypes and adding high-density genotypic information. Due to advances in sequencing technology, genome-wide single nucleotide polymorphism markers are available through genotyping-by-sequencing at a cost conducive to application for genomic selection. At CIMMYT, genomic selection has been applied to predict all of the processing and end-use quality traits regularly tested in the spring wheat breeding program. These traits have variable levels of prediction accuracy, however, they demonstrated that most expensive traits, dough rheology and baking final product, can be predicted with a high degree of confidence. Currently it is being explored how to combine both phenotypic and genomic selection to make more efficient the genetic improvement for quality traits at CIMMYT spring wheat breeding program. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

    Thermal diffusivity identification based on an iterative regularization method

    Get PDF
    This article deals with the identification of a space and time dependent material thermal diffusivity. Such parameter is involved in heat transfers described by partial differential equations. An iterative regularization method based on a conjugate gradient algorithm is implemented. Such approach is attractive in order to efficiently deal with measurement noises and model errors. Numerical results are illustrated according to several simulations

    Development of a skin burn predictive model adapted to laser irradiation

    Get PDF
    Laser technology is increasingly used, and it is crucial for both safety and medical reasons that the impact of laser irradiation on human skin can be accurately predicted. This study is mainly focused on laser–skin interactions and potential lesions (burns). A mathematical model dedicated to heat transfers in skin exposed to infrared laser radiations has been developed. The model is validated by studying heat transfers in human skin and simultaneously performing experimentations an animal model (pig). For all experimental tests, pig’s skin surface temperature is recorded. Three laser wavelengths have been tested: 808 nm, 1940 nm and 10 600 nm. The first is a diode laser producing radiation absorbed deep within the skin. The second wavelength has a more superficial effect. For the third wavelength, skin is an opaque material. The validity of the developed models is verified by comparison with experimental results (in vivo tests) and the results of previous studies reported in the literature. The comparison shows that the models accurately predict the burn degree caused by laser radiation over a wide range of conditions. The results show that the important parameter for burn prediction is the extinction coefficient. For the 1940 nm wavelength especially, significant differences between modeling results and literature have been observed, mainly due to this coefficient’s value. This new model can be used as a predictive tool in order to estimate the amount of injury induced by several types (couple power-time) of laser aggressions on the arm, the face and on the palm of the hand

    On the use of periodic photothermal methods for materials diagnosis

    No full text
    International audienc

    Relationships among international testing sites of spring durum wheat

    No full text
    Knowledge of the relationships among international test sites is valuable information for effective targeting of germplasm exchange. Five years of grain yield data from the Elite Durum Yield Trial (EDYT), consisting of 132 trials from 32 locations in 22 countries, were studied. Pattern analysis, the combination of ordination and cluster analysis. was used to identify groupings of international test sites that represent similar selection environments and compare location association with the mega-environment designations of the International Maize and Wheat Improvement Center (CIMMYT) breeding program. Two main environmental groups and six subgroups were identified for durum wheat (Triticum turgidum L. var. durum). The major determinants of the groupings were latitude and moisture supply. Biotic and abiotic stresses influenced further delineation of the clusters. Discrepancies between mega-environment designation and pattern analysis results warrant further investigations of the underlying causes. The relationships among test sites documented in this study should provide a framework for effectively targeting germplasm and information exchange between comparable programs
    corecore