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The International Center for Maize and Wheat Improvement (CIMMYT) leads the Global Wheat Program, whose
main objective is to increase the productivity of wheat cropping systems to reduce poverty in developing countries.
The priorities of the program are high grain yield, disease resistance, tolerance to abiotic stresses (drought andheat),
and desirable quality. TheWheat Chemistry andQuality Laboratory has been continuously evolving to be able to an-
alyze the largest number of samples possible, in the shortest time, at lowest cost, in order to deliver data on diverse
quality traits on time to the breeders formaking selections for advancement in the breeding pipeline. The participa-
tion of wheat quality analysis/selection is carried out in two stages of the breeding process: evaluation of the paren-
tal lines for new crosses and advanced lines in preliminary and elite yield trials. Thousands of lines are analyzed
which requires a big investment in resources. Genomic selection has been proposed to assist in selecting for quality
and other traits in breeding programs. Genomic selection can predict quantitative traits and is applicable tomultiple
quantitative traits in a breedingpipeline by attaining historical phenotypes and addinghigh-density genotypic infor-
mation. Due to advances in sequencing technology, genome-wide single nucleotide polymorphism markers are
available through genotyping-by-sequencing at a cost conducive to application for genomic selection. At CIMMYT,
genomic selection has been applied to predict all of the processing and end-use quality traits regularly tested in
the spring wheat breeding program. These traits have variable levels of prediction accuracy, however, they demon-
strated that most expensive traits, dough rheology and baking final product, can be predicted with a high degree of
confidence. Currently it is being explored how to combine both phenotypic and genomic selection tomakemore ef-
ficient the genetic improvement for quality traits at CIMMYT spring wheat breeding program.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Understanding wheat quality - quality and what it means to
different people

Wheat quality is a very wide subject that will be defined differently
by the different stakeholders of the wheat chain, which makes it an
. This is an open access article under
extremely complex and variable concept. For farmers in some countries
wheat quality is considered what allows them to allocate their harvest-
ed grain at the grain market and get the highest price for it. This is usu-
ally different among countries, where each one has different regulations
that may prime farmers for producing better grain quality or not. Good
morphological characteristics (grain size and density through test
weight) and absence of grain damage are some of the most common
traits considered at grain markets to determine the grade and
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Table 1
Bread wheat gluten and end-use type classification to facilitate BW breeding at CIMMYT.

Hardness class &
grain color Gluten typea

End-use
typeb

Hard wheat
Hard-white and
hard-red

Strong
(W N 300; P/L b 1.3)

1a, 1b

Hard-white and
hard-red

Medium strong
(W = 200–300; P/L b 1.2)

2a, 2b

Hard-white and
hard-red

Medium weak
(W = 150–200; P/L b 1.1)

3a, 3b

Soft wheat
Soft-white Strong and medium-strong 4a
Soft-white and
soft-red

Weak 4b

Household or utility wheatc

Hard- or soft- white
or red

Tenacious (P/L N 1.3) or weak in not soft
endosperm (W b 150)

5

Type 1a should have grain protein above 12.5% (12.5% M. B.).
Types 2a and 3a should have grain protein above 11.5% (12.5% M. B.).
Type 4a should have grain protein above 11.0% (12.5% M. B.).
Type 5 has no differentiation regarding protein content.

a Alveograph parameters. W, dough strength value J × 10−4; P/L, tenacity extensibility
ratio.

b End-use type number followed by letter “a” has higher protein content than the same
followed by the letter “b”.

c Quality typesmarked as “Household (or utility) wheat” have tenacious or weak (in not
soft endosperm) gluten character, which is generally undesirable for most of the end-use
types requiring aminimumof processing and end product quality attributes. Thiswheat is
used mainly for home consumption, as whole meal flour or refined flour, used to prepare
dense-leavened and flat breads or traditional dishes. Main quality attributes: taste, aroma.
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sometimes the prize of the produced wheat. In other countries such as
Australia or Canada there are more complex grading systems, in
which protein content is usually an important trait (Blakeney et al.,
2009). In other countries subsistence farmers will mill and process the
wheat to feed their families and in these cases farmers consider wheat
quality what allows them to produce a good product with desirable or-
ganoleptic properties.

For millers, wheat quality is the ability of a wheat variety to produce
high levels of flour or semolina during the extraction process. In this
process the level of contamination of the flour/semolinawith bran frac-
tions is also important and is linked inmost cases to undesirable charac-
teristics for the end-use quality of the product. For milling quality the
traits probably most important are the grain morphology, grain density
(test weight) (Matsuo and Dexter, 1980) and grain hardness (Edwards
et al., 2010). Millers prefer large grain with plump shape which is well
filled and not shriveled. These characteristics are also targets for
breeders to increase grain yield in the field. On the other hand, food
manufactures are more focused on processing quality, the ability of a
wheat variety to be processed with minimum cost to give a uniform
product, and end-use quality, the ability of a wheat variety to produce
a specific product according to the consumers' preferences. For both
types of quality, grain hardness and gluten quality and quantity are crit-
ical. Nutritional quality, the ability of a food to supply nutrients for a
complete physical andmental development and a healthy life, is becom-
ing also a big priority for food manufacturers due to the interest of con-
sumers in that issue.

Last, but not least, consumers could have very different ideas ofwhat
wheat qualitymeans. Someof themwill think about the end-use quality
of the product, while others could think about the processing conditions
(artisanal or handmade vs. mechanized or industrial) or the nutritional
quality of food products. End-use consumers vary in terms of quality de-
mands, although there are several traits well identified among con-
sumers as desired for specific products (soft crumb for bread, yellow
color in pasta, shelf life of products, etc.). Having all this in mind breed-
ing for quality to satisfy the demands of all the mentioned stakeholders
is no simple task.

2. Bread wheat quality improvement at CIMMYT

The International Center for Maize and Wheat Improvement
(CIMMYT) leads the Global Wheat Program of the Consultative Group
on International Agriculture Research (CGIAR), whose main objective
is to increase the productivity ofwheat cropping systems to reduce pov-
erty in developing countries. For this purpose CIMMYTworks in the de-
velopment of new wheat germplasm that can be used by national
partners to improve their own germplasm or be released directly as va-
rieties when appropriate. The priorities of the breeding program of
CIMMYT are high grain yield, disease resistance, tolerance to abiotic
stresses such as drought and heat, and desirable quality. Thousands of
new breeding lines are evaluated annually in the three main field sta-
tions of the Program (Ciudad Obregon and Toluca in Mexico, and
Njoro in Kenya). These evaluations lead to the formation of a set of
best lines targeted to different environments (irrigated, semi-arid,
high rain fed, etc.),which are distributed to national partners as interna-
tional nurseries. Following this approach CIMMYT germplasm is exten-
sively used worldwide, particularly in developing countries (Lantican et
al., 2016).

As above mentioned, wheat quality is an integral part of this breed-
ing process. Wheat Chemistry and Quality Laboratory has been an im-
portant component of the Global Wheat Program since its creation. As
CIMMYT has a global mission and end-use quality of all bread wheat
products developed worldwide are diverse, the strategy of the program
has beenmainly to guarantee good gluten quality (diverse levels of glu-
ten strength combinedwith good extensibility) atmedium protein con-
tent levels, in semi-hard or hard grains. This set of quality parameters is
preferred for most products in developing countries. The laboratory has
been continuously evolving to be able to analyze the largest number of
samples possible, in the shortest time, at lowest cost, in order to deliver
data on diverse quality traits on time to the breeders for making selec-
tions for advancement in the breeding pipeline. Currently for bread
wheat, the following analyses and traits are routinely tested for the
samples of the breeding program: grain image analysis (test weight
and thousand kernelweight), visual grain inspection (color), grain anal-
ysis by NIR (hardness, protein and moisture content), milling (flour
yield), flour analysis by NIR (protein, ash and moisture content; water
absorption for mixograph, alveograph and bread-making based in
Guzman et al., 2015), SDS-sedimentation, dough rheology (mixograph
for optimum mixing time and torque, and alveograph for gluten
strength and extensibility) and end-use product testing (baking pup
loaf for volume and crumb structure). The methodologies used for
these analysis are based on the official protocols of the AACC
(American Association of Cereal Chemists, 2010), although several
modifications have been implemented in both equipment and proce-
dures to gain higher throughput and greater genetic diversity (Peña et
al., 1990; Guzman et al., 2015, 2016a). This is necessary to characterize
around 2500 samples in five months' time, deliver data on time, and
allow breeders to select based in both field and quality traits.

For a better understanding and use of the wheat quality data gener-
ated, samples are classified in five different potential end-use types (1–
5), using an index of the phenotypic data (Table 1). In each type there
can be also subtypes based on protein content (a for medium-high
and b formedium-low). An overview of the typical uses for each catego-
ry is found in Table 2. Briefly, type 1 are the white and red grain lines
suitable for pan type breads in mechanized industry; type 2a (above
11.5% of protein content) are for leavened breads produced in semi-
mechanized industry (baguette, supermarket breads, etc.), two-layer
flat breads (baladi), and dry & fresh noodles (alkaline, white, instant),
while type 2b are for single-layer flat breads (chapatti) and steamed
bread (North-China style); type 3 are for lines used to develop hand-
made products including dense and flat breads and some kind of noo-
dles; type 4a (above 11.5% of protein content) are for steamed bread
(South-China style) and white-salted noodles while type 4b are for



Table 2
Potential products developed within each end-use type.

End-use type Type number⁎

Hard wheat
Pan type breads (mechanized baking industry) 1a, 1b
Leavened breads in general (semi mechanized baking industry) 2a
Flat breads such as pocket bread 2a
Dry noodles: alkaline, white-salted, instant 2a
Steamed breads (Northern China Style) 2b
Flat breads such as chapatti, roti, and flour tortillas 2b
Dense hearth breads, and some flour tortillas 3a, 3b

Soft wheat
Steamed breads (Southern China Style) 4a
White-salted noodles 4a
Pastries, biscuits, cakes, and other steamed breads (SE Asia) 4b
Household (utility) use 5

⁎ Based on grain hardness, grain color, dough mixing properties, and gluten strength
and extensibility requirements achieved by CIMMYT germplasm under Mexican (Cd.
Obregon, Sonora, Northwest Mexico) growing conditions with experimental yield level
between 6 and 9 ton/ha.
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biscuits and cakes; at last type 5 are for the lines unacceptable for any
product, sold as utility or feed wheat. The main factors to define these
types are grain hardness and gluten properties determined by the
alveograph. Hard or semi-hard endosperm lines can be suitable for
end-use types 1, 2 and 3, while soft endosperm lines are the ones than
can be classified as type 4. About gluten properties, lines included in
end-use type 1 should have alveograph W (J ∗ 10−4) value above 300
and P/L ratio below 1.3- meaning strong, but not tenacious gluten;
end-use types 2 W higher than 200 and P/L ratio below 1.1- meaning
medium strong gluten and acceptable-good extensibility; and end-use
types 3Wbetween 150 and 200 and P/L ratio below 1.0- demonstrating
weaker gluten strength but extensible. For end-use type 4 the range of
values is notwell defined, but biscuits and cakesW should not be higher
than 125 and P/L below 0.5- meaning weak, but very extensible gluten.
The hard or semi-hard lines showing tenacious or weak gluten, and the
soft ones with tenacious gluten are automatically classified as end-use
type 5, and should be discarded from the breeding program. This is a
simple and probably simplistic classification criterion but works well
as a selection tool to have an overall idea of the potential of each line
in terms of quality. National partners conduct more specific quality
analysis, including end-use tests, to further assess if wheat lines match
with their quality requirements in their specific region.

In the spring bread wheat program the participation of wheat qual-
ity analysis/selection is mainly carried out in two stages of the breeding
process: evaluation of the parental lines for new crosses and advanced
lines in preliminary and elite yield trials (Fig. 1). The best way to ensure
good quality in the breeding lines is to use the appropriate parental lines
for crosses. For this reason, annually, all the lines that are part of the
crossing block are characterized for the above mentioned quality traits.
These lines are additionally analyzed for glutenin composition at the
Glu-1 and Glu-3 loci, using SDS-PAGE to have a more complete genetic
profile in terms of quality of these lines. The presence of other genes
with effects on quality traits as Pin-D1 (Morris, 2002), Wx-1 (Guzman
and Alvarez, 2016) orwbm (Guzman et al., 2016b). Based on that infor-
mation parental lines are recommended to the breeders, who include in
each cross at least one line donor of good quality traits and desirable
glutenins. Following parental assessment, quality analyses are not con-
ducted until lines reach preliminary yield trials (approximately seven
generations). There are threemain reasons for this: 1) analyzing quality
in the heterozygous or heterogenous state is not indicative of quality in
the pure-line; 2) high throughput, accurate methodologies are not
available to analyze the extremely high number of entries present in
early andmiddle generations of the breeding pipeline; and 3) and prob-
ably more important, early testing for quality must not compromise the
other priorities of the Program (high grain yield, disease resistance, tol-
erance to abiotic stresses), whichmust runwith finite testing resources.
Due to these reasons, quality analysis are only performed in those lines
already selected for agronomic traits and yield from the preliminary
yield trials, resulting in approximately 1400 lines for quality testing.
The quality data generated will be used to select which best yielding
and highest quality lines will advance to the yield trials in next cycle.
After this trial is complete, approximately 500 best performing lines
from the second year yield trial are also analyzed for quality. Thus,
breeders have two years of quality data to decide which lines should
be discarded based on quality traits or which ones can be distributed
with partners through international nurseries. Following this approach,
the progress in terms of quality in spring bread wheat CIMMYT germ-
plasm has been good in the last ten years (Fig. 2), since the percentage
of lines showing poor quality (end-use type 5) is currently much
lower than ten years ago.

3. Genomic selection for wheat quality improvement

Fast developments in genotyping and sequencing technologies have
prompted breeders to use dense genotypic information for genomic se-
lection (Meuwissen et al., 2001). Furthermore, practical evidence ob-
tained from plant and animal breeding data have demonstrated that
genomic selection (GS) overcomes the prediction accuracy of models
based on a reduced number of loci or that of pedigree-based methods
(de los Campos et al., 2009, 2010; Crossa et al., 2010, 2011; Heslot et
al., 2012; Pérez-Rodriguez et al., 2012). Genomic selection models
were originally developed for a single trait evaluated in a single environ-
ment, and most analyses published so far are based on within-environ-
ment analyses.

Genomic selection has been proposed to predict quantitative traits
(Meuwissen et al., 2001) and is applicable tomultiple quantitative traits
in a breeding pipeline by attaining historical phenotypes (which the
program is already conducting) and adding high-density genotypic in-
formation. Due to advances in sequencing technology, genome-wide
single nucleotide polymorphism (SNP) markers are available through
genotyping-by-sequencing (GBS) at a cost conducive to application for
genomic selection (Poland and Rife, 2012; Poland et al., 2012). Current-
ly, the cost of genotyping all ~10,000 first year yield trials lines is equiv-
alent to phenotyping 2000 lines for processing and end-use quality
(Battenfield et al., 2016). Thus, genomic selection, for quality alone
will assist in selecting for quality at CIMMYT since all first-year yield tri-
als can be predicted, rather than only the yield trialwinners. In addition,
several other quantitative traits are being predicted.

Several studies have proposed using GS models that accommodate
G × E; for example, Burgueño et al. (2012) was the first to extend the
single-trait-single-environment GBLUP model to a multi-environment
framework reporting important gains in prediction accuracy relative
to single-environment analysis. More recently, Heslot et al. (2014) and
Jarquin et al. (2014) modeled G × E using both genetic markers and en-
vironmental covariates. Several studies also showed that modeling
G × E can give substantial gains in prediction accuracy.

In GS, phenotypic and marker data on the base training population
are fitted together in a statistical model in order to estimate all marker
effects. These estimates can then be used to compute the genomic esti-
mated breeding values (GEBVs) that are predictors of the breeding
values of unobserved genotypes for selection in the testing population
for which there is only marker information (Heffner et al., 2009;
Lorenz et al., 2011). Heffner et al. (2011) and Bernardo and Yu (2007)
have shown that selection based on genomic predictions can lead to
greater genetic gain for complex traits.

Several methods for predicting marker effects and breeding values
have been developed (VanRaden, 2008; Goddard, 2009; de los
Campos et al., 2013; Gianola, 2013) and used for wheat traits prediction
at CIMMYT (Crossa et al., 2016; Mondal et al., 2016). The standard
method is the Ridge-Regression Best Linear Unbiased Predictor (or its
equivalent, the Genomic BLUP). Methods such as Bayes A and Bayes B
assume that the variance of marker effects has an a priori inverse chi-



Fig. 1. Breeding scheme used currently for spring bread wheat improvement at CIMMYT. Stages where currently genomic selection is being used or could be used in the future are
indicated.
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squared distribution (Meuwissen et al., 2001) that produces shrinkage
as well as variable selection. The difference among several Bayesian
models is how they specify the prior distribution of the parameters of
interest. In general, when the random marker effects have a multivari-
ate normal distribution and the size of the training population and the
number of markers is large, all methods produce GEBVs that are highly
correlated with the true breeding values of the candidates for selection
(Hayes et al., 2009; Verbyla et al., 2010).
We know some loci control large portions of trait variances; for ex-
ample, hardness is controlled primarily by Pin-D1 genes (Lillemo et al.,
2006; Morris, 2002), and dough rheology traits have large impact
from high and low molecular weight glutenins (Payne et al., 1987).
However, not all genes controlling these traits have been identified,
and in any cases clear “best” ideotypes of quality genes have not been
identified to allow marker-assisted selection a clear path regarding
quality traits, and finally breeding programs must cross outside of



Fig. 2. Percentage of lines in candidates nursery (preliminary yield trial) classified in each
end-use type in different years.
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ideal quality for diversity in other traits of interest such as yield and dis-
ease resistance.

Battenfield et al. (2016) applied genomic selection to all of the pro-
cessing and end-use quality traits regularly tested in the CIMMYT spring
wheat breeding program as listed above. These traits have variable
levels of prediction accuracy, however, they demonstrated that most
expensive traits, dough rheology and baking final product, can be pre-
dicted with a high degree of confidence. Genomic selection validation
was conducted where all historical material was used to train the
model and predict processing and end-use quality performance in first
year yield trials of the following year. This temporal forward method
was used in order to represent the annual challenge of using genomic
selection in a breeding program.

The next challenge in implementing genomic selection for multiple
processing and end-use quality traits is determining best methods for
making selections in the breeding program. Since there are several
end-use type classifications and both upper and lower thresholds on
many quality traits, “good quality” may mean keeping the population
consistent. In this regard, genomic selection predictions have been
returned to breeders along mean and standard deviation of trait
GEBVs. Wheat lines with trait GEBV one and two standard deviations
above and below the mean are identified. Predicted end-use classifica-
tion on the total predicted quality profile is examined like the empirical
phenotypic end-use type profile. For example, two standard deviations
above mean for predicted Alveograph P/L is predicts tenacious gluten,
Alveograph W one or two standard deviations below mean predicts
very weak compared to other material in the program. This system
does not specifically predict end-use quality type, but is still useful for
breeders who will be able to discard the lowest quality lines of each
cycle, advancing lines which are outside of a given quality profile.

Well-known check variety lines have also been included in genomic
selection predictions of the first year yield trial. These lines were chosen
for a study of genetic yield potential improvement, and represent some
of themega-varieties released from the CIMMYT international nurseries
(some examples include Seri M 82, Pavon F 76, Attila, and PBW343, to
newer entries such as Roelfs2007 and Borlaug 100) (Guzman and
Alvarez, 2016; Velu et al., 2016). Among these lines are good examples
of good and poor bread making quality, and lines commonly used for
making chapatti. The predicted quality profiles of the check varieties
were used as both a validation of using themean±1 and 2 standard de-
viation methods, and also demonstrated what various quality profiles
would look like among the predictions.

In conclusion, genomic selection is being revealed as an efficient ap-
proach to support wheat quality improvement in breeding programs.
However, genomic selection is not a complete replacement for pheno-
typic selection. In the CIMMYT program, currently genomic selection
is applied to filter for quality selection among all ~10,000 first-year
yield trials lines. This allows a first pass to filter out lines that would
be very poor in processing and end-use quality, mostly end-use type
5. Yield is still the first metric of performance in the CIMMYT program,
so top yield performers (~top 10%) will remain in the program
regardless of quality. Genomic selection is applied in the next set of ma-
terials (11–25% top yielding) to break ties among performance, where
lower quality materials are not advanced, allowing CIMMYT to better
utilize resources in the breeding pipeline. Phenotypic selection is still
used on all materials advanced to make the empirical judgement of
lines advancing in the breeding pipeline.
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