134 research outputs found
Immunotherapy and cardiovascular diseases: novel avenues for immunotherapeutic approaches
As current therapies for cardiovascular disease (CVD), predominantly based on lipid lowering, still face an unacceptable residual risk, novel treatment strategies are being explored. Besides lipids, inflammatory processes play a major role in the pathogenesis of atherosclerosis, the underlying cause of the majority of CVD. The first clinical trials targeting the interleukin-1 beta-inflammasome axis have shown that targeting this pathway is successful in reducing cardiovascular events but did not decrease overall CVD mortality. Hence, novel and improved immunotherapeutics to treat CVD are being awaited
Characteristics and properties of fibres suitable for a low FODMAP diet. An overview
Background: Irritable bowel syndrome (IBS) is one of the most common gastro-intestinal disorders worldwide and is often treated by adjusting the diet of IBS patients. An increased intake of dietary fibre (DF) and a limitation of
the intake of fermentable oligo-, di-,monosaccharides and polyols (FODMAP) are the two dietary adjustments which are frequently recommended for people suffering from IBS. However, one challenge of a diet low in
FODMAPs is the limited number of suitable dietary fibres.
Scope and approach: The aim of this overview is to identify characteristics and DFs beneficial for IBS patients by comparing the physico-chemical properties of FODMAPs and DFs. Therefore, relevant literature about DFs and
FODMAPs was collected and summarised. These characteristics and the associated technological properties were used for a selection of DFs which can be used to develop food products with an increased fibre content and a
lower FODMAP content while assuring the product quality expected by the consumer.
Key findings and conclusions: A low fermentation rate, low osmotic activity, insolubility and a high viscosity of soluble DFs have been identified as characteristics which are beneficial independent from the type of IBS. Soluble
and non-viscous DFs can be beneficial depending on the occurrence of diarrhoea and their state of hydration. This finding highlights the importance of targeting a specific type of IBS. The above mentioned characteristics
and the list of suitable DFs provide a good base for the development of functional foods and for future research regarding DF supporting the needs of IBS patients
Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine
Aims: Creatine buffers cellular adenosine triphosphate (ATP) via the creatine kinase reaction. Creatine levels are reduced in heart failure, but their contribution to pathophysiology is unclear. Arginine:glycine amidinotransferase (AGAT) in the kidney catalyses both the first step in creatine biosynthesis as well as homoarginine (HA) synthesis. AGAT-/- mice fed a creatine-free diet have a whole body creatine-deficiency. We hypothesized that AGAT-/- mice would develop cardiac dysfunction and rescue by dietary creatine would imply causality. Methods and results: Withdrawal of dietary creatine in AGAT-/- mice provided an estimate of myocardial creatine efflux of ∼2.7%/day; however, in vivo cardiac function was maintained despite low levels of myocardial creatine. Using AGAT-/- mice naïve to dietary creatine we confirmed absence of phosphocreatine in the heart, but crucially, ATP levels were unchanged. Potential compensatory adaptations were absent, AMPK was not activated and respiration in isolated mitochondria was normal. AGAT-/- mice had rescuable changes in body water and organ weights suggesting a role for creatine as a compatible osmolyte. Creatine-naïve AGAT-/- mice had haemodynamic impairment with low LV systolic pressure and reduced inotropy, lusitropy, and contractile reserve. Creatine supplementation only corrected systolic pressure despite normalization of myocardial creatine. AGAT-/- mice had low plasma HA and supplementation completely rescued all other haemodynamic parameters. Contractile dysfunction in AGAT-/- was confirmed in Langendorff perfused hearts and in creatine-replete isolated cardiomyocytes, indicating that HA is necessary for normal cardiac function. Conclusions: Our findings argue against low myocardial creatine per se as a major contributor to cardiac dysfunction. Conversely, we show that HA deficiency can impair cardiac function, which may explain why low HA is an independent risk factor for multiple cardiovascular diseases
Dietary Supplementation with Homoarginine Preserves Cardiac Function in a Murine Model of Post-Myocardial Infarction Heart Failure
Low plasma homoarginine (HA) is an emerging biomarker for cardiovascular disease and an independent predictor of mortality in patients with heart failure. Plasma levels appear to reflect cardiac dysfunction, positively correlating with ejection fraction and inversely with circulating brain natriuretic peptide. However, whether this outcome is a bystander or cause-and-effect has yet to be established. Within the context of stroke, a direct causal relationship has been inferred because normal mice pretreated with 14 mg/L HA had a smaller stroke size. In the present study, we show for the first time that dietary supplementation with HA improves cardiac function in the setting of chronic heart failure, suggesting a novel preventive strategy and inferring that low HA levels may be inherently detrimental because of a loss of this effect
Cross-Sectional Associations between Homoarginine, Intermediate Phenotypes, and Atrial Fibrillation in the CommunityThe Gutenberg Health Study
Homoarginine has come into the focus of interest as a biomarker for cardiovascular disease. Atrial fibrillation (AF) causes a substantial increase in morbidity and mortality. Whether circulating homoarginine is associated with occurrence or persistence of AF and may serve as a new predictive biomarker remains unknown. We measured plasma levels of homoarginine in the population-based Gutenberg health study (3761 patients included, of them 51.7% males), mean age 55.6 +/- 10.9 years-old. Associations between homoarginine and intermediate electrocardiographic and echocardiographic phenotypes and manifest AF were examined. Patients with AF (124 patients, of them 73.4% males) had a mean age 64.8 +/- 8.6 years-old compared to a mean age of 55.3 +/- 10.9 in the population without AF (p-value < 0.001) and showed a less beneficial risk factor profile. The median homoarginine levels in individuals with and without AF were 1.9 mol/L (interquartile range (IQR) 1.5-2.5) and 2.0 mol/L (IQR 1.5-2.5), respectively, p = 0.56. In multivariable-adjusted regression analyses homoarginine was not statistically significantly related to electrocardiographic variables. Among echocardiographic variables beta per standard deviation increase was -0.12 (95% confidence interval (CI) -0.23-(-0.02);p = 0.024) for left atrial area and -0.01 (95% CI -0.02-(-0.003);p = 0.013) for E/A ratio. The odds ratio between homoarginine and AF was 0.91 (95% CI 0.70-1.16;p = 0.45). In our large, population-based cross-sectional study, we did not find statistically significant correlations between lower homoarginine levels and occurrence or persistence of AF or most standard electrocardiographic phenotypes, but some moderate inverse associations with echocardiographic left atrial size and E/A. Homoarginine may not represent a strong biomarker to identify individuals at increased risk for AF. Further investigations will be needed to elucidate the role of homoarginine and cardiac function
Role of inflammatory signaling pathways involving the CD40–CD40L–TRAF cascade in diabetes and hypertension—insights from animal and human studies
CD40L–CD40–TRAF signaling plays a role in atherosclerosis progression and affects the pathogenesis of coronary heart disease (CHD). We tested the hypothesis that CD40L–CD40–TRAF signaling is a potential therapeutic target in hyperlipidemia, diabetes, and hypertension. In mouse models of hyperlipidemia plus diabetes (db/db mice) or hypertension (1 mg/kg/d angiotensin-II for 7 days), TRAF6 inhibitor treatment (2.5 mg/kg/d for 7 or 14 days) normalized markers of oxidative stress and inflammation. As diabetes and hypertension are important comorbidities aggravating CHD, we explored whether the CD40L–CD40–TRAF signaling cascade and their associated inflammatory pathways are expressed in CHD patients suffering from comorbidities. Therefore, we analyzed vascular bypass material (aorta or internal mammary artery) and plasma from patients with CHD with diabetes and/or hypertension. Our Olink targeted plasma proteomic analysis using the IMMUNO-ONCOLOGY panel revealed a pattern of step-wise increase for 13/92 markers of low-grade inflammation with significant changes. CD40L or CD40 significantly correlated with 38 or 56 other inflammatory targets. In addition, specific gene clusters that correlate with the comorbidities were identified in isolated aortic mRNA of CHD patients through RNA-sequencing. These signaling clusters comprised CD40L–CD40–TRAF, immune system, hemostasis, muscle contraction, metabolism of lipids, developmental biology, and apoptosis. Finally, immunological analysis revealed key markers correlated with comorbidities in CHD patients, such as CD40L, NOX2, CD68, and 3-nitrotyrosine. These data indicate that comorbidities increase inflammatory pathways in CHD, and targeting these pathways will be beneficial in reducing cardiovascular events in CHD patients with comorbidities
Deficiency of the T cell regulator Casitas B-cell lymphoma-B aggravates atherosclerosis by inducing CD8+ T cell-mediated macrophage death
The E3-ligase CBL-B (Casitas B-cell lymphoma-B) is an important negative regulator of T cell activation that is also expressed in macrophages. T cells and macrophages mediate atherosclerosis, but their regulation in this disease remains largely unknown; thus, we studied the function of CBL-B in atherogenesis.The expression of CBL-B in human atherosclerotic plaques was lower in advanced lesions compared with initial lesions and correlated inversely with necrotic core area. Twenty weeks old Cblb−/−Apoe−/− mice showed a significant increase in plaque area in the aortic arch, where initial plaques were present. In the aortic root, a site containing advanced plaques, lesion area rose by 40%, accompanied by a dramatic change in plaque phenotype. Plaques contained fewer macrophages due to increased apoptosis, larger necrotic cores, and more CD8+ T cells. Cblb−/−Apoe−/− macrophages exhibited enhanced migration and increased cytokine production and lipid uptake. Casitas B-cell lymphoma-B deficiency increased CD8+ T cell numbers, which were protected against apoptosis and regulatory T cell-mediated suppression. IFNγ and granzyme B production was enhanced in Cblb−/−Apoe−/− CD8+ T cells, which provoked macrophage killing. Depletion of CD8+ T cells in Cblb−/−Apoe−/− bone marrow chimeras rescued the phenotype, indicating that CBL-B controls atherosclerosis mainly through its function in CD8+ T cells. Casitas B-cell lymphoma-B expression in human plaques decreases during the progression of atherosclerosis. As an important regulator of immune responses in experimental atherosclerosis, CBL-B hampers macrophage recruitment and activation during initial atherosclerosis and limits CD8+ T cell activation and CD8+ T cell-mediated macrophage death in advanced atherosclerosis, thereby preventing the progression towards high-risk plaques.Biopharmaceutic
Hyperlipidaemia elicits an atypical, T helper 1-like CD4 + T-cell response: a key role for very low-density lipoprotein.
AIMS: Hyperlipidemia and T cell driven inflammation are important drivers of atherosclerosis, the main underlying cause of cardiovascular disease. Here, we detailed the effects of hyperlipidemia on T cells. METHODS AND RESULTS: In vitro, exposure of human and murine CD4+ T cells to very low-density lipoprotein (VLDL), but not to low-density lipoprotein (LDL) resulted in upregulation of Th1 associated pathways. VLDL was taken up via a CD36-dependent pathway and resulted in membrane stiffening and a reduction in lipid rafts. To further detail this response in vivo, T cells of mice lacking the LDL receptor (LDLr), which develop a strong increase in VLDL cholesterol and triglyceride levels upon high cholesterol feeding were investigated. CD4+ T cells of hyperlipidemic Ldlr-/- mice exhibited an increased expression of the C-X-C-chemokine receptor 3 (CXCR3) and produced more interferon-γ (IFN-γ). Gene set enrichment analysis identified IFN-γ-mediated signaling as the most upregulated pathway in hyperlipidemic T cells. However, the classical Th1 associated transcription factor profile with strong upregulation of Tbet and Il12rb2 was not observed. Hyperlipidemia did not affect levels of the CD4+ T cell's metabolites involved in glycolysis or other canonical metabolic pathways but enhanced amino acids levels. However, CD4+ T cells of hyperlipidemic mice showed increased cholesterol accumulation and an increased arachidonic acid (AA) to docosahexaenoic acid (DHA) ratio, which was associated with inflammatory T cell activation. CONCLUSIONS: Hyperlipidemia, and especially its VLDL component induces an atypical Th1 response in CD4+ T cells. Underlying mechanisms include CD36 mediated uptake of VLDL, and an altered AA/DHA ratio
Admission levels of asymmetric and symmetric dimethylarginine predict long-term outcome in patients with community-acquired pneumonia
During infection, there is an activation of the L-arginine-nitric-oxide pathway, with a shift from nitric oxide synthesis to a degradation of L-arginine to its metabolites, asymmetric and symmetric dimethylarginine (ADMA and SDMA). However, the prognostic implications for short-term or long-term survival remains unclear. We investigated the association of L-arginine, ADMA, and SDMA with adverse clinical outcomes in a well-defined cohort of patients with community-acquired pneumonia (CAP).; We measured L-arginine, ADMA, and SDMA in 268 CAP patients from a Swiss multicenter trial by mass spectrometry and used Cox regression models to investigate associations between blood marker levels and disease severity as well as mortality over a period of 6 years.; Six-year mortality was 44.8%. Admission levels of ADMA and SDMA (μmol/L) were correlated with CAP severity as assessed by the pneumonia severity index (r = 0.32, p < 0.001 and r = 0.56, p < 0.001 for ADMA and SDMA, respectively) and higher in 6-year non-survivors versus survivors (median 0.62 vs. 0.48; p < 0.001 and 1.01 vs. 0.85; p < 0.001 for ADMA and SDMA, respectively). Both ADMA and SDMA were significantly associated with long-term mortality (hazard ratios [HR] 4.44 [95% confidence intervals (CI) 1.84 to 10.74] and 2.81 [95% CI 1.45 to 5.48], respectively). The effects were no longer significant after multivariate adjustment for age and comorbidities. No association of L-arginine with severity and outcome was found.; Both ADMA and SDMA show a severity-dependent increase in patients with CAP and are strongly associated with mortality. This association is mainly explained by age and comorbidities.; ISRCTN95122877 . Registered 31 July 2006
- …