517 research outputs found

    Application and Analysis of Machine Learning Algorithms on Pima and Early Diabetes Datasets for Diabetes Prediction

    Get PDF
    Diabetes is a chronic condition that strike how your body burns food for energy. Much of the food you consume is converted by your body into sugar (glucose), which is then released into your bloodstream. Your pancreas releases insulin when your blood sugar levels rise. Over the years, several scholars have sought to create reliable diabetes prediction models. Due to a lack of adequate data sets and prediction techniques, this discipline still faces many unsolved research issues, which forces researchers to apply big data analytics and ML-based methodology. Four distinct machine learning algorithms are used in the study to analyze healthcare prediction analytics and solve the issues. In this investigation, the Pima and Early detection datasets were employed. We applied the Decision Tree, MLP, Naive Bayes, and Random Forest algorithms to these datasets and evaluated the accuracy and F-Measure. The goal of this research is to develop a system that could more precisely predict a patient's risk of developing diabetes

    What If the Destination Is Transplant? Outcomes of Destination Therapy Patients Who Were Transplanted

    Get PDF
    We sought to characterize patients who underwent heart transplant (HTx) following destination therapy (DT) implant in the combined ENDURANCE/ENDURANCE Supplemental Trials (DT/DT2). A post hoc analysis of the DT/DT2 trials was performed. Baseline characteristics and adverse events between the HTx and no-HTx cohorts were analyzed. Reasons for transplant were examined. Time to HTx was compared with contemporaneous HVAD BTT trial patients. Of the 604 DT/DT2 HVAD patients, 80 (13%) underwent HTx. The HTx cohort was younger (53.6 ± 11.1 vs. 65.2 ± 10.8, P \u3c 0.0001) with fewer Caucasians (60.0% vs. 76.5%, P = 0.002), less ischemic cardiomyopathy (42.5% vs. 58.8%, P = 0.01), and atrial fibrillation (38.8% vs. 54.4%, P = 0.01). The HTx cohort had longer 6-minute walk distances (183.6 vs. 38.0 m, P = 0.02). Most HTx in DT/DT2 were categorized as elective (n = 63, 79%) and, of these, 70% were due to modification of behavioral issues and weight loss. Adverse events were the main indication for urgent HTx (n = 17, 21%). Median times to HTx were longer in DT/DT2 (550.0 days) versus BTT/lateral (285.2 days). In this post hoc analysis of the DT/DT2 trials, over 1 in 10 underwent heart transplantation within 3 years of HVAD support. In DT therapy patients, consideration for transplant following DT VAD implant may be feasible

    Residual life and strength estimates of aircraft structural components with MSD/MED

    Get PDF
    Economic and safe operation of the flight vehicles flying beyond their initial design life calls for an in-depth structural integrity evaluation of all components with potential for catastrophic damages. Fuselage panels with cracked skin and/or stiffening elements is one such example. A three level analytical approach is developed to analyze the pressurized fuselage stiffened shell panels with damaged skin or stiffening elements. A global finite element analysis is first carried out to obtain the load flow pattern through the damaged panel. As an intermediate step, the damaged zone is treated as a spatially three-dimensional structure modeled by plate and shell finite elements, with all the neighboring elements that can alter the stress state at the crack tip. This is followed by the Schwartz-Neumann alternating method for local analysis to obtain the relevant crack tip parameters that govern the onset of fracture and the crack growth. The methodology developed is generic in nature and aims at handling a large fraction of problem areas identified by the Industry Committee on Wide-Spread Fatigue Damage

    Pulmonary toxicity of synthetic amorphous silica–effects of porosity and copper oxide doping

    Get PDF
    Materials can be modified for improved functionality. Our aim was to test whether pulmonary toxicity of silica nanomaterials is increased by the introduction of: a) porosity; and b) surface doping with CuO; and whether c) these modifications act synergistically. Mice were exposed by intratracheal instillation and for some doses also oropharyngeal aspiration to: 1) solid silica 100 nm; 2) porous silica 100 nm; 3) porous silica 100 nm with CuO doping; 4) solid silica 300 nm; 5) porous silica 300 nm; 6) solid silica 300 nm with CuO doping; 7) porous silica 300 nm with CuO doping; 8) CuO nanoparticles 9.8 nm; or 9) carbon black Printex 90 as benchmark. Based on a pilot study, dose levels were between 0.5 and 162 µg/mouse (0.2 and 8.1 mg/kg bw). Endpoints included pulmonary inflammation (neutrophil numbers in bronchoalveolar fluid), acute phase response, histopathology, and genotoxicity assessed by the comet assay, micronucleus test, and the gamma-H2AX assay. The porous silica materials induced greater pulmonary inflammation than their solid counterparts. A similar pattern was seen for acute phase response induction and histologic changes. This could be explained by a higher specific surface area per mass unit for the most toxic particles. CuO doping further increased the acute phase response normalized according to the deposited surface area. We identified no consistent evidence of synergism between surface area and CuO doping. In conclusion, porosity and CuO doping each increased the toxicity of silica nanomaterials and there was no indication of synergy when the modifications co-occurred

    Standardization of electroencephalography for multi-site, multi-platform and multi-investigator studies: Insights from the canadian biomarker integration network in depression

    Get PDF
    Subsequent to global initiatives in mapping the human brain and investigations of neurobiological markers for brain disorders, the number of multi-site studies involving the collection and sharing of large volumes of brain data, including electroencephalography (EEG), has been increasing. Among the complexities of conducting multi-site studies and increasing the shelf life of biological data beyond the original study are timely standardization and documentation of relevant study parameters. We presentthe insights gained and guidelines established within the EEG working group of the Canadian Biomarker Integration Network in Depression (CAN-BIND). CAN-BIND is a multi-site, multi-investigator, and multiproject network supported by the Ontario Brain Institute with access to Brain-CODE, an informatics platform that hosts a multitude of biological data across a growing list of brain pathologies. We describe our approaches and insights on documenting and standardizing parameters across the study design, data collection, monitoring, analysis, integration, knowledge-translation, and data archiving phases of CAN-BIND projects. We introduce a custom-built EEG toolbox to track data preprocessing with open-access for the scientific community. We also evaluate the impact of variation in equipment setup on the accuracy of acquired data. Collectively, this work is intended to inspire establishing comprehensive and standardized guidelines for multi-site studies

    Stromal cell-derived factor and granulocyte-monocyte colony-stimulating factor form a combined neovasculogenic therapy for ischemic cardiomyopathy

    Get PDF
    ObjectiveIschemic heart failure is an increasingly prevalent global health concern with major morbidity and mortality. Currently, therapies are limited, and novel revascularization methods might have a role. This study examined enhancing endogenous myocardial revascularization by expanding bone marrow-derived endothelial progenitor cells with the marrow stimulant granulocyte-monocyte colony-stimulating factor and recruiting the endothelial progenitor cells with intramyocardial administration of the potent endothelial progenitor cell chemokine stromal cell-derived factor.MethodsIschemic cardiomyopathy was induced in Lewis rats (n = 40) through left anterior descending coronary artery ligation. After 3 weeks, animals were randomized into 4 groups: saline control, granulocyte-monocyte colony-stimulating factor only (GM-CSF only), stromal cell-derived factor only (SDF only), and combined stromal cell-derived factor/granulocyte-monocyte colony-stimulating factor (SDF/GM-CSF) (n = 10 each). After another 3 weeks, hearts were analyzed for endothelial progenitor cell density by endothelial progenitor cell marker colocalization immunohistochemistry, vasculogenesis by von Willebrand immunohistochemistry, ventricular geometry by hematoxylin-and-eosin microscopy, and in vivo myocardial function with an intracavitary pressure-volume conductance microcatheter.ResultsThe saline control, GM-CSF only, and SDF only groups were equivalent. Compared with the saline control group, animals in the SDF/GM-CSF group exhibited increased endothelial progenitor cell density (21.7 ± 3.2 vs 9.6 ± 3.1 CD34+/vascular endothelial growth factor receptor 2–positive cells per high-power field, P = .01). There was enhanced vascularity (44.1 ± 5.5 versus 23.8 ± 2.2 von Willebrand factor-positive vessels per high-power field, P = .007). SDF/GM-CSF group animals experienced less adverse ventricular remodeling, as manifested by less cavitary dilatation (9.8 ± 0.1 mm vs 10.1 ± 0.1 mm [control], P = .04) and increased border-zone wall thickness (1.78 ± 0.19 vs 1.41 ± 0.16 mm [control], P = .03). (SDF/GM-CSF group animals had improved cardiac function compared with animals in the saline control group (maximum pressure: 93.9 ± 3.2 vs 71.7 ± 3.1 mm Hg, P < .001; maximum dP/dt: 3513 ± 303 vs 2602 ± 201 mm Hg/s, P < .05; cardiac output: 21.3 ± 2.7 vs 13.3 ± 1.3 mL/min, P < .01; end-systolic pressure-volume relationship slope: 1.7 ± 0.4 vs 0.5 ± 0.2 mm Hg/μL, P < .01.)ConclusionThis novel revascularization strategy of bone marrow stimulation and intramyocardial delivery of the endothelial progenitor cell chemokine stromal cell-derived factor yielded significantly enhanced myocardial endothelial progenitor cell density, vasculogenesis, geometric preservation, and contractility in a model of ischemic cardiomyopathy

    Large Scale Immune Profiling of Infected Humans and Goats Reveals Differential Recognition of Brucella melitensis Antigens

    Get PDF
    Brucellosis is a widespread zoonotic disease that is also a potential agent of bioterrorism. Current serological assays to diagnose human brucellosis in clinical settings are based on detection of agglutinating anti-LPS antibodies. To better understand the universe of antibody responses that develop after B. melitensis infection, a protein microarray was fabricated containing 1,406 predicted B. melitensis proteins. The array was probed with sera from experimentally infected goats and naturally infected humans from an endemic region in Peru. The assay identified 18 antigens differentially recognized by infected and non-infected goats, and 13 serodiagnostic antigens that differentiate human patients proven to have acute brucellosis from syndromically similar patients. There were 31 cross-reactive antigens in healthy goats and 20 cross-reactive antigens in healthy humans. Only two of the serodiagnostic antigens and eight of the cross-reactive antigens overlap between humans and goats. Based on these results, a nitrocellulose line blot containing the human serodiagnostic antigens was fabricated and applied in a simple assay that validated the accuracy of the protein microarray results in the diagnosis of humans. These data demonstrate that an experimentally infected natural reservoir host produces a fundamentally different immune response than a naturally infected accidental human host
    • …
    corecore