18,099 research outputs found

    Physical mechanism for a kinetic energy driven zero-bias anomaly in the Anderson-Hubbard model

    Full text link
    The combined effects of strong disorder, strong correlations and hopping in the Anderson-Hubbard model have been shown to produce a zero bias anomaly which has an energy scale proportional to the hopping and minimal dependence on interaction strength, disorder strength and doping. Disorder-induced suppression of the density of states for a purely local interaction is inconsistent with both the Efros-Shklovskii Coulomb gap and the Altshuler-Aronov anomaly, and moreover the energy scale of this anomaly is inconsistent with the standard energy scales of both weak and strong coupling pictures. We demonstrate that a density of states anomaly with similar features arises in an ensemble of two-site systems, and we argue that the energy scale t emerges in strongly correlated systems with disorder due to the mixing of lower and upper Hubbard orbitals on neighboring sites.Comment: 4 pages, 3 figures; new version includes minor changes to figures and text to increase clarit

    Contributions to workload of rotational optical transformations

    Get PDF
    An investigation of visuomotor adaptation to optical rotation and optical inversion was conducted. Experiment 1 examined the visuomotor adaptability of subjects to an optically rotating visual world with a univariate repeated measures design. Experiment 1A tested one major prediction of a model of adaptation put forth by Welch who predicted that the aversive drive state that triggers adaptation would be habituated to fairly rapidly. Experiment 2 was conducted to investigate the role of motor activity in adaptation to optical rotation. Specifically, this experiment contrasted the reafference hypothesis and the proprioceptive change hypothesis. Experiment 3 examined the role of cognition, error-corrective feedback, and proprioceptive and/or reafferent feedback in visuomotor adaptation to optical inversion. Implications for research and implications for practice were suggested for all experiments

    Temperature dependence of the zero-bias anomaly in the Anderson-Hubbard model: Insights from an ensemble of two-site systems

    Full text link
    Motivated by experiments on doped transition metal oxides, this paper considers the interplay of interactions, disorder, kinetic energy and temperature in a simple system. An ensemble of two-site Anderson-Hubbard model systems has already been shown to display a zero-bias anomaly which shares features with that found in the two-dimensional Anderson-Hubbard model. Here the temperature dependence of the density of states of this ensemble is examined. In the atomic limit, there is no zero-bias anomaly at zero temperature, but one develops at small nonzero temperatures. With hopping, small temperatures augment the zero-temperature kinetic-energy-driven zero-bias anomaly, while at larger temperatures the anomaly is filled in.Comment: 8 pages, 3 figures; submitted to SCES 2010 conference proceeding

    The effects of reinforcement interval on the acquisition of paired-associate responses

    Get PDF
    Effects of reinforcement interval on acquisition of paired-associate response

    SHARP: Automated monitoring of spacecraft health and status

    Get PDF
    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989

    Evaluation of registration, compression and classification algorithms. Volume 1: Results

    Get PDF
    The registration, compression, and classification algorithms were selected on the basis that such a group would include most of the different and commonly used approaches. The results of the investigation indicate clearcut, cost effective choices for registering, compressing, and classifying multispectral imagery

    Evaluation of registration, compression, and classification algorithms. Volume 2: Documentation

    Get PDF
    There are no author-identified significant results in this report

    Electrometry using the quantum Hall effect in a bilayer 2D electron system

    Full text link
    We discuss the development of a sensitive electrometer that utilizes a two-dimensional electron gas (2DEG) in the quantum Hall regime. As a demonstration, we measure the evolution of the Landau levels in a second, nearby 2DEG as the applied perpendicular magnetic field is changed, and extract an effective mass for electrons in GaAs that agrees within experimental error with previous measurements.Comment: 3.5 pages, 3 figures, submitted to APL

    Origin of the hysteresis in bilayer 2D systems in the quantum Hall regime

    Full text link
    The hysteresis observed in the magnetoresistance of bilayer 2D systems in the quantum Hall regime is generally attributed to the long time constant for charge transfer between the 2D systems due to the very low conductivity of the quantum Hall bulk states. We report electrometry measurements of a bilayer 2D system that demonstrate that the hysteresis is instead due to non-equilibrium induced current. This finding is consistent with magnetometry and electrometry measurements of single 2D systems, and has important ramifications for understanding hysteresis in bilayer 2D systems.Comment: 4 pages, 3 figs. Accepted for publication in PR
    • …
    corecore