102 research outputs found

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    The estimation of responses to selection in hill sheep

    No full text
    SIGLEAvailable from British Library Lending Division - LD:D55229/85 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Facial and vocal discrimination in sheep

    No full text
    International audienc

    Facial and vocal discrimination in sheep

    No full text
    International audienc

    External validation of Cardiac disease, Hypertension, and Logarithmic Left anterior descending coronary artery radiation dose (CHyLL) for predicting major adverse cardiac events after lung cancer radiotherapy

    No full text
    Background and purpose: Major adverse cardiac events(MACE) are prevalent in patients with locally advanced-non-small cell lung cancer(LA-NSCLC) following radiotherapy(RT). The CHyLL model, incorporating coronary heart disease(CHD),Hypertension(HTN),Logarithmic LADV15 was developed and internally-validated to predict MACE among LA-NSCLC patients. We sought to externally validate CHyLL to predict MACE in an independent LA-NSCLC cohort. Patients and methods: Patients with LA-NSCLC treated with RT were included. CHyLL score was calculated:5.51CHD + 1.28HTN + 1.48ln(LADV15 + 1)-1.36CHD*ln(LADV15 + 1). CHyLL performance in predicting MACE was assessed and compared to mean heart dose(MHD) using Cox-proportional hazard(PH) analyses and Harrel’s concordance(C)-indices. MACE and overall survival(OS) among low-vs high-risk groups(CHyLL < 5 vs ≥ 5) were compared. Results: In the external validation cohort(N = 102), the median age was 71 years and 55% were females. Most(n = 74,73%), had clinical Stage III disease and 35(34%) underwent surgery. CHyLL demonstrated good MACE prediction with C-index of 0.73(95% Confidence Interval(CI):0.58–0.89), while MHD did not (C-index = 0.46 (95% CI:0.30–0.62)). Per CHyLL, 32(31%) and 70(69%) patients were considered low-and high-risk for MACE, respectively. CHyLL consistently identified lower MACE rates in the low-vs high-risk group(log-rank p = 0.108):0 vs 8%(12 months),5 vs 16%(24 months),5 vs 16%(36 months),and 5 vs 19%(48 months) post-RT. In the pooled internal and external validation cohort(N = 303), MACE rates in low-vs high-risk groups were statistically significantly different(log-rank p = 0.01):1 vs 6%(12 months),3 vs 12%(24 months),6 vs 19%(36 months),and 6 vs 21%(48 months). Conclusions: CHyLL was externally validated and superior to MHD in predicting MACE. CHyLL has the potential to identify high-risk patients who may benefit from cardio-oncology optimization and to estimate personalized LADV15 constraints based on cardiac risk factors and acceptable MACE thresholds
    • …
    corecore