4 research outputs found

    Molecular Genetic Analysis of Survival Motor Neuron Gene in 460 Turkish Cases with Suspicious Spinal Muscular Atrophy Disease

    Get PDF
    How to Cite This Article: Rashnonejad A, Onay H, Atik T, Atan Sahin O, Gokben S, Tekgul H, Ozkinay F. Molecular Genetic Analysis of Survival Motor Neuron Gene in 460 Turkish Cases with Suspicious Spinal Muscular Atrophy Disease. Iran J Child Neurol. Autumn 2016; 10(4):30-35.AbstractObjectiveTo describe 12 yr experience of molecular genetic diagnosis of Spinal Muscular Atrophy (SMA) in 460 cases of Turkish patients. Materials & MethodsA retrospective analysis was performed on data from 460 cases, referred to Medical Genetics Laboratory, Ege University’s Hospital, Izmir, Turkey, prediagnosed as SMA or with family history of SMA between 2003 and 2014.The PCR-restriction fragment length polymorphism (RFLP) and the Multiplex ligation–dependent probe amplification (MLPA) analysis were performed to detect the survival motor neuron (SMN)1 deletions and to estimate SMN1 and SMN2 gene copy numbers. ResultsUsing PCR-RFLP test, 159 of 324 postnatal and 18 of 77 prenatal cases were detected to have SMN1 deletions. From positive samples, 88.13% had a homozygous deletion in both exon 7 and exon 8 of SMN1. Using MLPA, 54.5% of families revealed heterozygous deletions of SMN1, and 2 or 3 copies of SMN2, suggesting a healthy SMA carrier. Among patients referred for SMA testing, the annual percentage of patients diagnosed as SMA has decreased gradually from 90.62% (2003) down to 20.83% (2014). ConclusionAlthough PCR-RFLP method is a reliable test for SMA screening, MLPA is a necessary additional test and provide relevant data for genetic counseling of families having previously affected child. The gradual decrease in the percentage of patients molecularly diagnosed as SMA shows that clinicians have begun to use genetic tests in the differential diagnosis of muscular atrophies. Cost and availability of these genetic tests has greatly attributed to their use.   References1. Brichta L, Holker I, Haug K, Klockgether T, Wirth B. In vivo activation of SMN in spinal muscular atrophy carriers and patients treated with valprotae. Ann Neurol 2006;59:970-5.2. Prior TW, Krainer AR, Hua Y, Swoboda KJ, Snyder PC, Bridgeman SJ, et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am J Hum Genet 2009;85:408-13.3. Striano P, Boccella P, Sarappa C, Striano S. Spinal muscular atrophy and progressive myoclonic epilepsy: one case report and characteristics of the epileptic syndrome. Seizure 2004;13:582-6.4. Wirth B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 2000;15:228-37.5. Van der Steege G, Grootscholten PM, Van der Vlies P, Draaijers TG, Osinga J, Cobben JM, et al. PCR-based DNA test to confirm clinical diagnosis of autosomal recessive spinal muscular atrophy. Lancet 1995;345:985-6.6. Rekik I, Boukhris A, Ketata S, Amri M, Essid N, Feki I, et al. Deletion analysis of SMN and NAIP genes in Tunisian patients with spinal muscular atrophy. Ann Indian Acad Neurol 2013;16:57-61.7. de Souza Godinho FM, Bock H, Gheno TC, Saraiva-Pereira ML. Molecular Analysis of Spinal Muscular Atrophy: A genotyping protocol based on TaqMan realtime PCR. Genet Mol Biol 2012;35:955-9.8. Burghes AH. When deletion is not a deletion? When it is converted? Am J Hum Genet 1997;61:9-15.9. Kubo Y, Nishio H, Saito K. A new method for SMN1 and hybrid SMN gene analysis 1. in spinal muscular atrophy using long-range PCR followed by sequencing. J Hum 2. Genet 2015;60:233-9.10. Ogino S, Leonard DG, Rennert H, Wilson RB. Spinal Muscular Atrophy Genetic Testing Experience at an Academic Medical Center. J Mol Diagn 2002;4:53-8.11. Baumbach-Reardon L, Sacharow S, Ahearn ME. Spinal Muscular Atrophy, X-Linked Infantile. Gene Review 1993.12. Khaniani MS, Derakhshan SM, Abasalizadeh S. Prenatal diagnosis of spinal muscular atrophy: clinical experience and molecular genetics of SMN gene analysis in 36 cases. J Prenat Med 2013;7:32-4.13. Lin SP, Chang JG, Jong YJ, Yang TY, Tsai CH, Wang NM, et al. Prenatal prediction of spinal muscular atrophy in Chinese. Prenat Diagn 1999;19:657-61.14. Cobben JM, Scheffer H, De visser M, Van der Steege G, Verhey JB, Osigna J, et al. Prenatal prediction of spinal muscular atrophy. Experience with linkage studies and consequences of present SMN deletion analysis. Eur J Hum Genet 1996;4:231-6.15. Miskovic M, Lalic T, Radivojevic D, Cirkovic S, Ostojic S, Guc-Scekic M. Ten years of experience in molecular prenatal diagnosis and carrier testing for spinal muscular atrophy among families from Serbia. Int J Gynaecol Obstet 2014;124:55-8.16. Mailman MD, Heinz JW, Papp AC, Snyder PJ, Sedra MS, Burghes AHM, Wirth B, Prior TW. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet Med 2002;4:20–26.17. Ogino S, Leonard DG, Rennert H, Ewens WJ, Wilson RB. Genetic risk assessment in carrier testing for spinal muscular atrophy. Am J Med Genet 2002;110:301-7.18. Wirth B. An update on the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 2000;15:228–37

    Approach to Common Cold in Children

    No full text
    WOS: 000219054200002Infections of the upper respiratory tract are very common in children. Clinical features and patterns of disease are different from those in adults. Although infections of the upper respiratory tract often resolve completely without complications, treatment is indicated where it can achieve more rapid resolution of symptoms and prevent the complications. Vast amounts of money are wasted on over-the-counter products for colds. Clinical trials have confirmed their lack of efficacy. This review summarizes the epidemiology, pathogenesis, clinical features, diagnosis and treatment of common cold in children

    Association of vitamin D receptor polymorphisms and type 1 diabetes susceptibility in children: a meta-analysis

    No full text
    WOS: 000404924700004PubMed ID: 28232367Background: There have been studies focused on FokI, BsmI, ApaI and TaqI polymorphisms of the vitamin D receptor (VDR) gene and susceptibility to type 1 diabetes mellitus with controversial results. Methods: This present study is a meta-analysis investigating the association between FokI, ApaI, TaqI and BsmI polymorphisms of VDR gene and type 1 DM in children. A literature search was performed using Medline, EMBASE, Cochrane and PubMed. Any study was considered eligible for inclusion if at least one of FokI, ApaI, TaqI and BsmI polymorphisms was determined, and outcome was type 1 DM at pediatric age. Results: A total of 9 studies comprising 1053 patients and 1017 controls met the study inclusion criteria. The pooled odds ratios (ORs) of the FokI, ApaI, TaqI and BsmI polymorphisms were combined and calculated. Forest plots and funnel plots of the OR value distributions were drawn. Our meta-analysis has demonstrated statistically significant associations between DM1 and VDR genotypes, BsmIBB (P < 0.05), BsmIBb, (P < 0.05), BsmIbb (P < 0.05), TaqITT (P < 0.05) and TaqItt (P < 0.05) in children. Conclusion: The results indicated that BsmIBB, BsmIBb and TaqItt polymorphisms were associated with an increased risk of type 1 DM, whereas BsmIbb and TaqITT had protective effect for type 1 DM in children
    corecore