35 research outputs found

    New MR sequences in daily practice: susceptibility weighted imaging. A pictorial essay

    Get PDF
    Background Susceptibility-weighted imaging (SWI) is a relatively new magnetic resonance (MR) technique that exploits the magnetic susceptibility differences of various tissues, such as blood, iron and calcification, as a new source of contrast enhancement. This pictorial review is aimed at illustrating and discussing its main clinical applications. Methods SWI is based on high-resolution, threedimensional (3D), fully velocity-compensated gradientecho sequences using both magnitude and phase images. A phase mask obtained from the MR phase images is multiplied with magnitude images in order to increase the visualisation of the smaller veins and other sources of susceptibility effects, which are displayed at best after postprocessing of the 3D dataset with the minimal intensity projection (minIP) algorithm. Results SWI is very useful in detecting cerebral microbleeds in ageing and occult low-flow vascular malformations, in characterising brain tumours and degenerative diseases of the brain, and in recognizing calcifications in various pathological conditions. The phase images are especially useful in differentiating between paramagnetic susceptibility effects of blood and diamagnetic effects of calcium. SWI can also be used to evaluate changes in iron content in different neurodegenerative disorders. Conclusion SWI is useful in differentiating and characterising diverse brain disorders

    Morphological and Behavioral Changes in the Pathogenesis of a Novel Mouse Model of Communicating Hydrocephalus

    Get PDF
    The Ro1 model of hydrocephalus represents an excellent model for studying the pathogenesis of hydrocephalus due to its complete penetrance and inducibility, enabling the investigation of the earliest cellular and histological changes in hydrocephalus prior to overt pathology. Hematoxylin and eosin staining, immunofluorescence and electron microscopy were used to characterize the histopathological events of hydrocephalus in this model. Additionally, a broad battery of behavioral tests was used to investigate behavioral changes in the Ro1 model of hydrocephalus. The earliest histological changes observed in this model were ventriculomegaly and disorganization of the ependymal lining of the aqueduct of Sylvius, which occurred concomitantly. Ventriculomegaly led to thinning of the ependyma, which was associated with periventricular edema and areas of the ventricular wall void of cilia and microvilli. Ependymal denudation was subsequent to severe ventriculomegaly, suggesting that it is an effect, rather than a cause, of hydrocephalus in the Ro1 model. Additionally, there was no closure of the aqueduct of Sylvius or any blockages within the ventricular system, even with severe ventriculomegaly, suggesting that the Ro1 model represents a model of communicating hydrocephalus. Interestingly, even with severe ventriculomegaly, there were no behavioral changes, suggesting that the brain is able to compensate for the structural changes that occur in the pathogenesis of hydrocephalus if the disorder progresses at a sufficiently slow rate

    Benign external hydrocephalus: a review, with emphasis on management

    Get PDF
    Benign external hydrocephalus in infants, characterized by macrocephaly and typical neuroimaging findings, is considered as a self-limiting condition and is therefore rarely treated. This review concerns all aspects of this condition: etiology, neuroimaging, symptoms and clinical findings, treatment, and outcome, with emphasis on management. The review is based on a systematic search in the Pubmed and Web of Science databases. The search covered various forms of hydrocephalus, extracerebral fluid, and macrocephaly. Studies reporting small children with idiopathic external hydrocephalus were included, mostly focusing on the studies reporting a long-term outcome. A total of 147 studies are included, the majority however with a limited methodological quality. Several theories regarding pathophysiology and various symptoms, signs, and clinical findings underscore the heterogeneity of the condition. Neuroimaging is important in the differentiation between external hydrocephalus and similar conditions. A transient delay of psychomotor development is commonly seen during childhood. A long-term outcome is scarcely reported, and the results are varying. Although most children with external hydrocephalus seem to do well both initially and in the long term, a substantial number of patients show temporary or permanent psychomotor delay. To verify that this truly is a benign condition, we suggest that future research on external hydrocephalus should focus on the long-term effects of surgical treatment as opposed to conservative management

    Vessel Injuries

    No full text
    corecore