16 research outputs found

    Photochemical formation of HCO and CH3 on the ground S0 (1A') state of CH3CHO.

    No full text
    The dynamics of the photodissociation of CH(3)CHO into CH(3) + HCO products have been investigated at energies between 30,953 and 31,771 cm(-1), spanning the threshold for radical production on the triplet (T(1)) surface. A barrierless pathway to CH(3) + HCO radical products formed on the ground state (S(0)) surface was discovered and established to be an important reaction channel in acetaldehyde photodissociation throughout this wavelength range. HCO laser induced fluorescence (LIF) spectra recorded from CH(3)CHO dissociated above and below the T(1) barrier energy are quite different; HCO produced on S(0) yields a more congested LIF spectrum with sharp rotational transitions, while HCO formed on the T(1) surface displays fewer, more intense, Doppler-broadened lines. These differences have been further explored in the populations of the HCO K(a) = 1 doublets. Despite the upper and lower levels being almost isoenergetic, HCO formed on T(1) preferentially populates the upper K(c) state due to the geometry of the T(1) transition state structure. In contrast, HCO formed on S(0) produces equal population in each of the upper and lower K(a) = 1 components. Product state distributions (PSDs) showed that HCO formed on S(0) is born with an approximately statistical distribution of population in the available product states, modeled well by phase space theory. HCO formed on the T(1) surface, in contrast, has a PSD that can be characterized as arising from "impulsive" dynamics. Previous discrepancies in the height of the T(1) barrier are discussed following the observation that, once the T(1) channel is energetically accessible, there is competition between the S(0) and T(1) pathways, with the dominance of the triplet channel increasing with increasing photolysis energy

    Photo-tautomerization of acetaldehyde to vinyl alcohol: a potential route to tropospheric acids.

    No full text
    Current atmospheric models underestimate the production of organic acids in the troposphere. We report a detailed kinetic model of the photochemistry of acetaldehyde (ethanal) under tropospheric conditions. The rate constants are benchmarked to collision-free experiments, where extensive photo-isomerization is observed upon irradiation with actinic ultraviolet radiation (310 to 330 nanometers). The model quantitatively reproduces the experiments and shows unequivocally that keto-enol photo-tautomerization, forming vinyl alcohol (ethenol), is the crucial first step. When collisions at atmospheric pressure are included, the model quantitatively reproduces previously reported quantum yields for photodissociation at all pressures and wavelengths. The model also predicts that 21 ± 4% of the initially excited acetaldehyde forms stable vinyl alcohol, a known precursor to organic acid formation, which may help to account for the production of organic acids in the troposphere

    Near-threshold H/D exchange in CD₃CHO photodissociation.

    No full text
    Measuring the isotopic abundance of hydrogen versus deuterium atoms is a key method for interrogating reaction pathways in chemistry. H/D 'scrambling' is the intramolecular rearrangement of labile isotopes of hydrogen atoms and when it occurs through unanticipated pathways can complicate the interpretation of such experiments. Here, we investigate H/D scrambling in acetaldehyde at the energetic threshold for breaking the formyl C-H bond and reveal an unexpected unimolecular mechanism. Laser photolysis experiments of CD₃CHO show that up to 17% of the products have undergone H/D exchange to give CD₂H + DCO. Transition-state theory calculations reveal that the dominant mechanism involves four sequential H- or D-shifts to form CD₂HCDO, which then undergoes conventional C-C bond cleavage. At the lowest energy the molecule undergoes an average of 20 H- or D-shifts before products are formed, evincing significant scrambling of H and D atoms. Analogous photochemically induced isomerizations and isotope scrambling are probably important in both atmospheric chemistry and combustion reactions

    Product state and speed distributions in photochemical triple fragmentations.

    No full text
    The clearest dynamical signature of a roaming reaction is a very cold distribution of energy into the rotational and translational degrees of freedom of the roaming donor fragment (e.g. CO) and an exceptionally hot vibrational distribution in the roaming acceptor fragment (e.g. H2, CH4). These signatures were initially identified in joint experimental/theoretical investigations of roaming in H2CO and CH3CHO and are now used to infer the presence of roaming mechanisms in other photodissociation reactions. In this paper we construct a phase space theory (PST) model of triple fragmentation (3F) and show that the dynamical signature of 3F is similar to that of the roaming donor fragment. The PST model starts with a calculation of two-body fragmentation (2F) of a generic molecule, ABC into AB + C. Every AB fragment with sufficient energy to undergo subsequence spontaneous dissociation is allowed to dissociate and the PST distribution of energy into A + B products is calculated for every initial AB state. Using CH3CHO --> HCO + CH3 --> H + CO + CH3 as an example, we calculate that the energy disposal into the rotational and translational degrees of freedom of the 3F products is very low, and is similar to the dynamical signature expected for production of CO via a roaming mechanism. We compare the 3F PST model with published experimental data for photodissociation of CH3CHO and CH3OCHO at energies above the 3F threshold

    Product state and speed distributions in photochemical triple fragmentations.

    Get PDF
    The clearest dynamical signature of a roaming reaction is a very cold distribution of energy into the rotational and translational degrees of freedom of the roaming donor fragment (e.g. CO) and an exceptionally hot vibrational distribution in the roaming acceptor fragment (e.g. H2, CH4). These signatures were initially identified in joint experimental/theoretical investigations of roaming in H2CO and CH3CHO and are now used to infer the presence of roaming mechanisms in other photodissociation reactions. In this paper we construct a phase space theory (PST) model of triple fragmentation (3F) and show that the dynamical signature of 3F is similar to that of the roaming donor fragment. The PST model starts with a calculation of two-body fragmentation (2F) of a generic molecule, ABC into AB + C. Every AB fragment with sufficient energy to undergo subsequence spontaneous dissociation is allowed to dissociate and the PST distribution of energy into A + B products is calculated for every initial AB state. Using CH3CHO --> HCO + CH3 --> H + CO + CH3 as an example, we calculate that the energy disposal into the rotational and translational degrees of freedom of the 3F products is very low, and is similar to the dynamical signature expected for production of CO via a roaming mechanism. We compare the 3F PST model with published experimental data for photodissociation of CH3CHO and CH3OCHO at energies above the 3F threshold
    corecore