173 research outputs found

    Urbanization effects on leaf mining densities and leaf damage of white oak (Quercus alba) in Guilford County, North Carolina

    Get PDF
    The urban habitat is the fastest growing ecosystem on Earth. Some organisms may respond to urbanization negatively by becoming locally extinct, while others respond positively and increase in numbers or densities. Leaf miners are insects whose larvae eat and live inside the leaves of plants until they pupate and emerge as adults. White Oak (Quercus alba) trees are common hardwood trees in Guilford County, and are well known hosts of leaf miners. In this study, the effects of urbanization on leaf miners and leaf damage by other herbivorous insects on white oak trees was examined. Six urban and rural parks were selected for investigation. In each park, three trees were selected and 50 leaves were picked at random for analysis. I hypothesized that leaf damage will be lower and leaf miner density will be higher in urban than rural areas. Leaf damage was significantly lower in urban areas than rural areas. Leaf miner abundance was lower in urban areas, but not significantly so. The mechanisms for lower leaf damage and possibly lower leaf miner densities in urban areas should be examined more in detail. The different type of leaf damage (e.g., chewers, skeletonizers, sap feeders, etc.) should also be investigated to test if urbanization differently affects insect feeding guilds

    Shifting Global Invasive Potential of European Plants with Climate Change

    Get PDF
    Global climate change and invasions by nonnative species rank among the top concerns for agents of biological loss in coming decades. Although each of these themes has seen considerable attention in the modeling and forecasting communities, their joint effects remain little explored and poorly understood. We developed ecological niche models for 1804 species from the European flora, which we projected globally to identify areas of potential distribution, both at present and across 4 scenarios of future (2055) climates. As expected from previous studies, projections based on the CGCM1 climate model were more extreme than those based on the HadCM3 model, and projections based on the a2 emissions scenario were more extreme than those based on the b2 emissions scenario. However, less expected were the highly nonlinear and contrasting projected changes in distributional areas among continents: increases in distributional potential in Europe often corresponded with decreases on other continents, and species seeing expanding potential on one continent often saw contracting potential on others. In conclusion, global climate change will have complex effects on invasive potential of plant species. The shifts and changes identified in this study suggest strongly that biological communities will see dramatic reorganizations in coming decades owing to shifting invasive potential by nonnative species

    Identification of undiagnosed atrial fibrillation patients using a machine learning risk prediction algorithm and diagnostic testing (PULsE-AI): Study protocol for a randomised controlled trial.

    Get PDF
    Atrial fibrillation (AF) is associated with an increased risk of stroke, enhanced stroke severity, and other comorbidities. However, AF is often asymptomatic, and frequently remains undiagnosed until complications occur. Current screening approaches for AF lack either cost-effectiveness or diagnostic sensitivity; thus, there is interest in tools that could be used for population screening. An AF risk prediction algorithm, developed using machine learning from a UK dataset of 2,994,837 patients, was found to be more effective than existing models at identifying patients at risk of AF. Therefore, the aim of the trial is to assess the effectiveness of this risk prediction algorithm combined with diagnostic testing for the identification of AF in a real-world primary care setting. Eligible participants (aged ≥30 years and without an existing AF diagnosis) registered at participating UK general practices will be randomised into intervention and control arms. Intervention arm participants identified at highest risk of developing AF (algorithm risk score ≥ 7.4%) will be invited for a 12‑lead electrocardiogram (ECG) followed by two-weeks of home-based ECG monitoring with a KardiaMobile device. Control arm participants will be used for comparison and will be managed routinely. The primary outcome is the number of AF diagnoses in the intervention arm compared with the control arm during the research window. If the trial is successful, there is potential for the risk prediction algorithm to be implemented throughout primary care for narrowing the population considered at highest risk for AF who could benefit from more intensive screening for AF. Trial Registration: NCT04045639

    Bright light in elderly subjects with nonseasonal major depressive disorder: a double blind randomised clinical trial using early morning bright blue light comparing dim red light treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Depression frequently occurs in the elderly. Its cause is largely unknown, but several studies point to disturbances of biological rhythmicity. In both normal aging, and depression, the functioning of the suprachiasmatic nucleus (SCN) is impaired, as evidenced by an increased prevalence of day-night rhythm perturbations, such as sleeping disorders. Moreover, the inhibitory SCN neurons on the hypothalamus-pituitary adrenocortical axis (HPA-axis) have decreased activity and HPA-activity is enhanced, when compared to non-depressed elderly. Using bright light therapy (BLT) the SCN can be stimulated. In addition, the beneficial effects of BLT on seasonal depression are well accepted. BLT is a potentially safe, nonexpensive and well accepted treatment option. But the current literature on BLT for depression is inconclusive.</p> <p>Methods/Design</p> <p>This study aims to show whether BLT can reduce non-seasonal major depression in elderly patients. Randomized double blind placebo controlled trial in 126 subjects of 60 years and older with a diagnosis of major depressive disorder (MDD, DSM-IV/SCID-I). Subjects are recruited through referrals of psychiatric outpatient clinics and from case finding from databases of general practitioners and old-people homes in the Amsterdam region. After inclusion subjects are randomly allocated to the active (bright blue light) vs. placebo (dim red light) condition using two Philips Bright Light Energy boxes type HF 3304 per subject, from which the light bulbs have been covered with bright blue- or dim red light- permitting filters. Patients will be stratified by use of antidepressants. Prior to treatment a one-week period without light treatment will be used. At three time points several endocrinological, psychophysiological, psychometrically, neuropsychological measures are performed: just before the start of light therapy, after completion of three weeks therapy period, and three weeks thereafter.</p> <p>Discussion</p> <p>If BLT reduces nonseasonal depression in elderly patients, then additional lightning may easily be implemented in the homes of patients to serve as add-on treatment to antidepressants or as a stand-alone treatment in elderly depressed patients. In addition, if our data support the role of a dysfunctional biological clock in depressed elderly subjects, such a finding may guide further development of novel chronobiological oriented treatment strategies.</p> <p>Trial registration</p> <p>ClinicalTrials.gov identifier: NCT00332670</p

    Identification of undiagnosed atrial fibrillation using a machine learning risk prediction algorithm and diagnostic testing (PULsE-AI) in primary care: a multi-centre randomised controlled trial in England

    Get PDF
    OBJECTIVE: The PULsE-AI trial sought to determine the effectiveness of a screening strategy that included a machine learning risk prediction algorithm in conjunction with diagnostic testing for identification of undiagnosed atrial fibrillation (AF) in primary care. This study aimed to evaluate the cost-effectiveness of implementing the screening strategy in a real-world setting. METHODS: Data from the PULsE-AI trial - a prospective, randomized, controlled trial conducted across six general practices in England from June 2019 to February 2021 - were used to inform a cost-effectiveness analysis that included a hybrid screening decision tree and Markov AF disease progression model. Model outcomes were reported at both individual- and population-level (estimated UK population ≥30 years of age at high-risk of undiagnosed AF) and included number of patients screened, number of AF cases identified, mean total and incremental costs (screening, events, treatment), quality-adjusted-life-years (QALYs), and incremental cost-effectiveness ratio (ICER). RESULTS: The screening strategy was estimated to result in 45,493 new diagnoses of AF across the high-risk population in the UK (3.3 million), and an estimated additional 14,004 lifetime diagnoses compared with routine care only. Per-patient costs for high-risk individuals who underwent the screening strategy were estimated at £1,985 (vs £1,888 for individuals receiving routine care only). At a population-level, the screening strategy was associated with a cost increase of approximately £322 million and an increase of 81,000 QALYs. The screening strategy demonstrated cost-effectiveness versus routine care only at an accepted ICER threshold of £20,000 per QALY-gained, with an ICER of £3,994/QALY. CONCLUSIONS: Compared with routine care only, it is cost-effective to target individuals at high risk of undiagnosed AF, through an AF risk prediction algorithm, who should then undergo diagnostic testing. This AF risk prediction algorithm can reduce the number of patients needed to be screened to identify undiagnosed AF, thus alleviating primary care burden

    Natural products as starting points for future anti-malarial therapies: going back to our roots?

    Get PDF
    Abstract Background The discovery and development of new anti-malarials are at a crossroads. Fixed dose artemisinin combination therapy is now being used to treat a hundred million children each year, with a cost as low as 30 cents per child, with cure rates of over 95%. However, as with all anti-infective strategies, this triumph brings with it the seeds of its own downfall, the emergence of resistance. It takes ten years to develop a new medicine. New classes of medicines to combat malaria, as a result of infection by Plasmodium falciparum and Plasmodium vivax are urgently needed. Results Natural product scaffolds have been the basis of the majority of current anti-malarial medicines. Molecules such as quinine, lapachol and artemisinin were originally isolated from herbal medicinal products. After improvement with medicinal chemistry and formulation technologies, and combination with other active ingredients, they now make up the current armamentarium of medicines. In recent years advances in screening technologies have allowed testing of millions of compounds from pharmaceutical diversity for anti-malarial activity in cellular assays. These initiatives have resulted in thousands of new sub-micromolar active compounds – starting points for new drug discovery programmes. Against this backdrop, the paucity of potent natural products identified has been disappointing. Now is a good time to reflect on the current approach to screening herbal medicinal products and suggest revisions. Nearly sixty years ago, the Chinese doctor Chen Guofu, suggested natural products should be approached by dao-xing-ni-shi or ‘acting in the reversed order’, starting with observational clinical studies. Natural products based on herbal remedies are in use in the community, and have the potential unique advantage that clinical observational data exist, or can be generated. The first step should be the confirmation and definition of the clinical activity of herbal medicinal products already used by the community. This first step forms a solid basis of observations, before moving to in vivo pharmacological characterization and ultimately identifying the active ingredient. A large part of the population uses herbal medicinal products despite limited numbers of well-controlled clinical studies. Increased awareness by the regulators and public health bodies of the need for safety information on herbal medicinal products also lends support to obtaining more clinical data on such products. Conclusions The relative paucity of new herbal medicinal product scaffolds active against malaria results discovered in recent years suggest it is time to re-evaluate the ‘smash and grab’ approach of randomly testing purified natural products and replace it with a patient-data led approach. This will require a change of perspective form many in the field. It will require an investment in standardisation in several areas, including: the ethnopharmacology and design and reporting of clinical observation studies, systems for characterizing anti-malarial activity of patient plasma samples ex vivo followed by chemical and pharmacological characterisation of extracts from promising sources. Such work falls outside of the core mandate of the product development partnerships, such as MMV, and so will require additional support. This call is timely, given the strong interest from researchers in disease endemic countries to support the research arm of a malaria eradication agenda. Para-national institutions such as the African Network for Drugs and Diagnostics Innovation (ANDi) will play a major role in facilitating the development of their natural products patrimony and possibly clinical best practice to bring forward new therapeutics. As in the past, with quinine, lapinone and artemisinin, once the activity of herbal medicinal products in humans is characterised, it can be used to identify new molecular scaffolds which will form the basis of the next generation of anti-malarial therapies.</p
    corecore