10 research outputs found

    Low genotypic diversity and long-term ecological decline in a spatially structured seagrass population

    Get PDF
    In isolated or declining populations, viability may be compromised further by loss of genetic diversity. Therefore, it is important to understand the relationship between long-term ecological trajectories and population genetic structure. However, opportunities to combine these types of data are rare, especially in natural systems. Using an existing panel of 15 microsatellites, we estimated allelic diversity in seagrass, Zostera marina, at five sites around the Isles of Scilly Special Area of Conservation, UK, in 2010 and compared this to 23 years of annual ecological monitoring (1996–2018). We found low diversity and long-term declines in abundance in this relatively pristine but isolated location. Inclusion of the snapshot of genotypic, but less-so genetic, diversity improved prediction of abundance trajectories; however, this was spatial scale-dependent. Selection of the appropriate level of genetic organization and spatial scale for monitoring is, therefore, important to identify drivers of eco-evolutionary dynamics. This has implications for the use of population genetic information in conservation, management, and spatial planning

    Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012

    Get PDF
    OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients

    Transformation of Petunia hybrida by the Agrobacterium suspension drop method

    No full text
    Plant transformation is a key methodology that has allowed transfer and expression of novel genes for the improvement of economically important plant species as well as enquiry into deeper questions about the function of plant genes. For many plant species, stable transformation remains difficult or impossible. Where it is possible, there is usually a need for expensive resources such as laminar flow hoods, controlled environment growth rooms and highly skilled practitioners. In addition, there are often problems related to combining efficient plant regeneration with gene transfer as transfer techniques are carried out in undifferentiated cell cultures. Low transformation efficiency, instability of transgene expression, somaclonal variation and inability to regenerate whole plants are common problems

    The impact of influenza A(H1N1)pdm09 compared with seasonal influenza on intensive care admissions in New South Wales, Australia, 2007 to 2010: a time series analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Australia, the 2009 epidemic of influenza A(H1N1)pdm09 resulted in increased admissions to intensive care. The annual contribution of influenza to use of intensive care is difficult to estimate, as many people with influenza present without a classic influenza syndrome and laboratory testing may not be performed. We used a population-based approach to estimate and compare the impact of recent epidemics of seasonal and pandemic influenza.</p> <p>Methods</p> <p>For 2007 to 2010, time series describing health outcomes in various population groups were prepared from a database of all intensive care unit (ICU) admissions in the state of New South Wales, Australia. The Serfling approach, a time series method, was used to estimate seasonal patterns in health outcomes in the absence of influenza epidemics. The contribution of influenza was estimated by subtracting expected seasonal use from observed use during each epidemic period.</p> <p>Results</p> <p>The estimated excess rate of influenza-associated respiratory ICU admissions per 100,000 inhabitants was more than three times higher in 2007 (2.6/100,000, 95% CI 2.0 to 3.1) than the pandemic year, 2009 (0.76/100,000, 95% CI 0.04 to 1.48). In 2009, the highest excess respiratory ICU admission rate was in 17 to 64 year olds (2.9/100,000, 95% CI 2.2 to 3.6), while in 2007, the highest excess rate was in those aged 65 years or older (9.5/100,000, 95% CI 6.2 to 12.8). In 2009, the excess rate was 17/100,000 (95% CI 14 to 20) in Aboriginal people and 14/100,000 (95% CI 13 to 16) in pregnant women.</p> <p>Conclusion</p> <p>While influenza was diagnosed more frequently and peak use of intensive care was higher during the epidemic of pandemic influenza in 2009, overall excess admissions to intensive care for respiratory illness was much greater during the influenza season in 2007. Thus, the impact of seasonal influenza on intensive care use may have previously been under-recognised. In 2009, high ICU use among young to middle aged adults was offset by relatively low use among older adults, and Aboriginal people and pregnant women were substantially over-represented in ICUs. Greater emphasis on prevention of serious illness in Aboriginal people and pregnant women should be a priority in pandemic planning.</p

    Sepsis

    No full text
    corecore