26 research outputs found
A Pipeline for the ROTSE-IIId Archival Data
We have constructed a new, fast, robust and reliable pipeline to detect
variable stars from the ROTSE-IIId archival data. Turkish share of ROTSE-III
archive contains approximately one million objects from a large field of view
(1.85\dgr) and it considerably covers a large portion of northern sky
(\delta>-25\dgr). The unfiltered ROTSE-III magnitude of the objects ranges
from 7.7 to 16.9. The main stages of the new pipeline are as follows: Source
extraction, astrometry of the objects, light curve generation and inhomogeneous
ensemble photometry. A high performance computing (HPC) algorithm has also been
implemented into the pipeline where we had a good performance even on a
personal computer. Running the algorithms of the pipeline on a cluster
decreases analysis time significantly from weeks to hours. The pipeline is
especially tested against long period variable stars with periods of a few
hundred days (e.g Mira and SR) and variables having periods starting from a few
days to a few hundred days were detected.Comment: 8 pages, 5 figures 2 tables; last revision before publishe
Structure and functional characterization of pyruvate decarboxylase from Gluconacetobacter diazotrophicus
BACKGROUND: Bacterial pyruvate decarboxylases (PDC) are rare. Their role in ethanol production and in bacterially
mediated ethanologenic processes has, however, ensured a continued and growing interest. PDCs from Zymomonas
mobilis (ZmPDC), Zymobacter palmae (ZpPDC) and Sarcina ventriculi (SvPDC) have been characterized and ZmPDC
has been produced successfully in a range of heterologous hosts. PDCs from the Acetobacteraceae and their role in
metabolism have not been characterized to the same extent. Examples include Gluconobacter oxydans (GoPDC),
G. diazotrophicus (GdPDC) and Acetobacter pasteutrianus (ApPDC). All of these organisms are of commercial importance.
RESULTS: This study reports the kinetic characterization and the crystal structure of a PDC from Gluconacetobacter
diazotrophicus (GdPDC). Enzyme kinetic analysis indicates a high affinity for pyruvate (KM 0.06 mM at pH 5), high
catalytic efficiencies, pHopt of 5.5 and Topt at 45 degrees C. The enzyme is not thermostable (T of
18 minutes at 60 degrees C) and the calculated number of bonds between monomers and dimers do not give clear indications
for the relatively lower thermostability compared to other PDCs. The structure is highly similar to those described for Z.
mobilis (ZmPDC) and A. pasteurianus PDC (ApPDC) with a rmsd value of 0.57 A for C? when comparing GdPDC to that
of ApPDC. Indole-3-pyruvate does not serve as a substrate for the enzyme. Structural differences occur in two loci,
involving the regions Thr341 to Thr352 and Asn499 to Asp503.
CONCLUSIONS: This is the first study of the PDC from G. diazotrophicus (PAL5) and lays the groundwork for future
research into its role in this endosymbiont. The crystal structure of GdPDC indicates the enzyme to be evolutionarily
closely related to homologues from Z. mobilis and A. pasteurianus and suggests strong selective pressure to keep the
enzyme characteristics in a narrow range. The pH optimum together with reduced thermostability likely reflect the
host organisms niche and conditions under which these properties have been naturally selected for. The lack of activity
on indole-3-pyruvate excludes this decarboxylase as the enzyme responsible for indole acetic acid production in
G. diazotrophicus.IS
The potential benefits of low-molecular-weight heparins in cancer patients
Cancer patients are at increased risk of venous thromboembolism due to a range of factors directly related to their disease and its treatment. Given the high incidence of post-surgical venous thromboembolism in cancer patients and the poor outcomes associated with its development, thromboprophylaxis is warranted. A number of evidence-based guidelines delineate anticoagulation regimens for venous thromboembolism treatment, primary and secondary prophylaxis, and long-term anticoagulation in cancer patients. However, many give equal weight to several different drugs and do not make specific recommendations regarding duration of therapy. In terms of their efficacy and safety profiles, practicality of use, and cost-effectiveness the low-molecular-weight heparins are at least comparable to, and offer several advantages over, other available antithrombotics in cancer patients. In addition, data are emerging that the antithrombotics, and particularly low-molecular-weight heparins, may exert an antitumor effect which could contribute to improved survival in cancer patients when given for long-term prophylaxis. Such findings reinforce the importance of thromboprophylaxis with low-molecular-weight heparin in cancer patients