15 research outputs found

    Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites

    Get PDF
    Natural fiber‐based polymer composites have been widely studied to substitute synthetic materials. In this research, pineapple leaf fibers (PALF) and coir fibers (CF) were loaded into a polylactic acid (PLA) matrix to develop composite materials with improved mechanical and thermal properties, which could be potentially applied as biodegradable food packaging. Biocomposites with different fiber ratios were manufactured using an internal mixer plasticizer and a hot press machine. Mechanical and thermal analyses of the obtained composites were carried out and the results were compared with those of pure PLA. Scanning electron microscopy (SEM) was used to observe the microstructural failure of the composites. Mechanical tests indicated that all the composites had higher tensile and flexural modulus, compared to those of neat PLA. Also, strength values were increased upon addition of PALF, while impact tests showed enhanced strength results upon addition of CF. SEM findings confirmed the outcomes of the mechanical tests. DMA results confirmed that the storage and loss moduli of the CF/PALF/PLA hybrid composites increased with respect to those of the neat PLA, whereas the tan δ decreased. The coefficient of thermal expansion (CTE) of the PLA composites decreased with the addition of fiber reinforcements. Based on the results achieved in this investigation, the hybrid composite containing CF and PALF in a 1:1 ratio (C1P1) presented the optimum set of mechanical properties and improved thermal stability, which make it suitable for applications such as food packaging and structure components to help reduce the environmental loads

    Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene

    Get PDF
    In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique) and Epoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique) biocomposites were prepared using thermocompression and resin film infusion processes. Neat polymeric matrices and its biocomposites were tested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also, thermal behavior of these materials has been studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Tensile and flexural test revealed that nonwoven Fique reinforced composites exhibited higher modulus and strength but lower deformation capability as compared with LLDPE and EP neat matrices. TG thermograms showed that nonwoven Fique fibers incorporation has an effect on the thermal stability of the composites. On the other hand, Fique fibers did not change the crystallization and melting processes of the LLDPE matrix but restricts the motion of EP macromolecules chains thus increases the Tg of the EP-Fique composite. Finally, this work opens the possibility of considering non-woven Fique fibers as a reinforcement material with a high potential for the manufacture of biocomposites for automotive applications. In addition to the processing test specimens, it was also possible to manufacture a part of LLDPE-Fique, and one part of EP-Fique. Keywords: Biocomposites, Natural materials, Nonwoven Fique fiber mat, LLDPE, Epoxy Resi

    The effect of water immersion and fibre content on properties of corn husk fibres reinforced thermoset polyester composite

    Get PDF
    This work presents an experimental investigation into the effect of cornhusk fibre (CHF) content upon the mechanical properties, water absorption behaviour, and swellability of CHF/polyester (PE) composites used in water environments. The CHF/PE was prepared at different volume fractions using hot compression (~175 °C). To investigate the rate of water absorption and swellability behaviours, composites were immersed in water for varying durations. The mechanical properties of composites (i.e. tensile, bending and compression strengths) immersed in water were carefully evaluated. The results indicate that the composites with an increased CHF content and a longer immersion time are prone to lower mechanical properties. The large amount of water absorbed by the composite reduces the bonding interface between CHF and PE, which is responsible for the damage. Moreover, the amount of water absorbed and the swellability increase with a corresponding increase in the CHF content. The lowest water absorption (2.39%) was detected in 20% CHF and 80% PE composite immersed for 6 days. The findings gathered in this research endorse CHF/polyester thermoset composites as a viable alternative for construction applications
    corecore