7,241 research outputs found

    The energy density of an Ising half plane lattice

    Full text link
    We compute the energy density at arbitrary temperature of the half plane Ising lattice with a boundary magnetic field HbH_b at a distance MM rows from the boundary and compare limiting cases of the exact expression with recent calculations at T=TcT=T_c done by means of discrete complex analysis methods.Comment: 12 pages, 1 figur

    The perimeter generating functions of three-choice, imperfect, and 1-punctured staircase polygons

    Full text link
    We consider the isotropic perimeter generating functions of three-choice, imperfect, and 1-punctured staircase polygons, whose 8th order linear Fuchsian ODEs are previously known. We derive simple relationships between the three generating functions, and show that all three generating functions are joint solutions of a common 12th order Fuchsian linear ODE. We find that the 8th order differential operators can each be rewritten as a direct sum of a direct product, with operators no larger than 3rd order. We give closed-form expressions for all the solutions of these operators in terms of 2F1_2F_1 hypergeometric functions with rational and algebraic arguments. The solutions of these linear differential operators can in fact be expressed in terms of two modular forms, since these 2F1_2F_1 hypergeometric functions can be expressed with two, rational or algebraic, pullbacks.Comment: 28 page

    Weber-like interactions and energy conservation

    Get PDF
    Velocity dependent forces varying as k(r^/r)(1μr˙2+γrr¨)k(\hat{r}/r)(1 - \mu \dot{r}^2 + \gamma r \ddot{r}) (such as Weber force), here called Weber-like forces, are examined from the point of view of energy conservation and it is proved that they are conservative if and only if γ=2μ\gamma=2\mu. As a consequence, it is shown that gravitational theories employing Weber-like forces cannot be conservative and also yield both the precession of the perihelion of Mercury as well as the gravitational deflection of light.Comment: latex, 11 pages, no figure

    Monthly and Diurnal Variability of Rain Rate and Rain Attenuation during the Monsoon Period in Malaysia

    Get PDF
    Rain is the major source of attenuation for microwave propagation above 10 GHz. In tropical and equatorial regions where the rain intensity is higher, designing a terrestrial and earth-to-satellite microwave links is very critical and challenging at these frequencies. This paper presents the preliminary results of rain effects in a 23 GHz terrestrial point-to-point communication link 1.3km long. The experimental test bed had been set up at Skudai, Johor Bahru, Malaysia. In this area, a monsoon equatorial climate prevails and the rainfall rate can reach values well above 100mm/h with significant monthly and diurnal variability. Hence, it is necessary to implement a mitigation technique for maintaining an adequate radio link performance for the action of very heavy rain. Since we now know that the ULPC (Up Link Power Control) cannot guarantee the desired performance, a solution based on frequency band diversity is proposed in this paper. Here, a secondary radio link operating in a frequency not affected by rain (C band for instance) is placed parallel with the main link. Under no rain or light rain conditions, the secondary link carries without priority radio signals. When there is an outage of the main link due to rain, the secondary link assumes the priority traffic. The outcome of the research shows a solution for higher operating frequencies during rainy events

    Hard hexagon partition function for complex fugacity

    Full text link
    We study the analyticity of the partition function of the hard hexagon model in the complex fugacity plane by computing zeros and transfer matrix eigenvalues for large finite size systems. We find that the partition function per site computed by Baxter in the thermodynamic limit for positive real values of the fugacity is not sufficient to describe the analyticity in the full complex fugacity plane. We also obtain a new algebraic equation for the low density partition function per site.Comment: 49 pages, IoP styles files, lots of figures (png mostly) so using PDFLaTeX. Some minor changes added to version 2 in response to referee report

    Integrability vs non-integrability: Hard hexagons and hard squares compared

    Full text link
    In this paper we compare the integrable hard hexagon model with the non-integrable hard squares model by means of partition function roots and transfer matrix eigenvalues. We consider partition functions for toroidal, cylindrical, and free-free boundary conditions up to sizes 40×4040\times40 and transfer matrices up to 30 sites. For all boundary conditions the hard squares roots are seen to lie in a bounded area of the complex fugacity plane along with the universal hard core line segment on the negative real fugacity axis. The density of roots on this line segment matches the derivative of the phase difference between the eigenvalues of largest (and equal) moduli and exhibits much greater structure than the corresponding density of hard hexagons. We also study the special point z=1z=-1 of hard squares where all eigenvalues have unit modulus, and we give several conjectures for the value at z=1z=-1 of the partition functions.Comment: 46 page
    corecore