5,038 research outputs found

    Metrics and isospectral partners for the most generic cubic PT-symmetric non-Hermitian Hamiltonian

    Get PDF
    We investigate properties of the most general PT-symmetric non-Hermitian Hamiltonian of cubic order in the annihilation and creation operators as a ten parameter family. For various choices of the parameters we systematically construct an exact expression for a metric operator and an isospectral Hermitian counterpart in the same similarity class by exploiting the isomorphism between operator and Moyal products. We elaborate on the subtleties of this approach. For special choices of the ten parameters the Hamiltonian reduces to various models previously studied, such as to the complex cubic potential, the so-called Swanson Hamiltonian or the transformed version of the from below unbounded quartic -x^4-potential. In addition, it also reduces to various models not considered in the present context, namely the single site lattice Reggeon model and a transformed version of the massive sextic x^6-potential, which plays an important role as a toy modelto identify theories with vanishing cosmological constant.Comment: 21 page

    Directional selection effects on patterns of phenotypic (co)variation in wild populations.

    Get PDF
    Phenotypic (co)variation is a prerequisite for evolutionary change, and understanding how (co)variation evolves is of crucial importance to the biological sciences. Theoretical models predict that under directional selection, phenotypic (co)variation should evolve in step with the underlying adaptive landscape, increasing the degree of correlation among co-selected traits as well as the amount of genetic variance in the direction of selection. Whether either of these outcomes occurs in natural populations is an open question and thus an important gap in evolutionary theory. Here, we documented changes in the phenotypic (co)variation structure in two separate natural populations in each of two chipmunk species (Tamias alpinus and T. speciosus) undergoing directional selection. In populations where selection was strongest (those of T. alpinus), we observed changes, at least for one population, in phenotypic (co)variation that matched theoretical expectations, namely an increase of both phenotypic integration and (co)variance in the direction of selection and a re-alignment of the major axis of variation with the selection gradient

    Higgs Sector of the Left-Right Model with Explicit CP Violation

    Full text link
    We explore the Higgs sector of the Minimal Left-Right (LR) Model based on the gauge group SU(2)_L x SU(2)_R x U(1)_{B-L} with explicit CP violation in the Higgs potential. Since flavour-changing neutral current experiments and the small scale of neutrino masses both place stringent constraints on the Higgs potential, we seek to determine whether minima of the Higgs potential exist that are consistent with current experimental bounds. We focus on the case in which the right-handed symmetry-breaking scale is only ``moderately'' large, of order 15-50 TeV. Unlike the case in which the Higgs potential is CP-invariant, the CP noninvariant case does yield viable scenarios, although these require a small amount of fine-tuning. We consider a LR model supplemented by an additional U(1) horizontal symmetry, which results in a Higgs sector consistent with current experimental constraints and a realistic spectrum of neutrino masses.Comment: 20 pages, 2 figure

    Physics-based derivation of a formula for the mutual depolarization of two post-like field emitters

    Get PDF
    Recent analyses of the field enhancement factor (FEF) from multiple emitters have revealed that the depolarization effect is more persistent with respect to the separation between the emitters than originally assumed. It has been shown that, at sufficiently large separations, the fractional reduction of the FEF decays with the inverse cube power of separation, rather than exponentially. The behavior of the fractional reduction of the FEF encompassing both the range of technological interest 0<c/h≲50<c/h\lesssim5 (cc being the separation and hh is the height of the emitters) and cβ†’βˆžc\rightarrow\infty, has not been predicted by the existing formulas in field emission literature, for post-like emitters of any shape. In this letter, we use first principles to derive a simple two-parameter formula for fractional reduction that can be of interest for experimentalists to modeling and interpret the FEF from small clusters of emitters or arrays in small and large separations. For the structures tested, the agreement between numerical and analytical data is ∼1%\sim1\%

    Two novel evolutionary formulations of the graph coloring problem

    Full text link
    We introduce two novel evolutionary formulations of the problem of coloring the nodes of a graph. The first formulation is based on the relationship that exists between a graph's chromatic number and its acyclic orientations. It views such orientations as individuals and evolves them with the aid of evolutionary operators that are very heavily based on the structure of the graph and its acyclic orientations. The second formulation, unlike the first one, does not tackle one graph at a time, but rather aims at evolving a `program' to color all graphs belonging to a class whose members all have the same number of nodes and other common attributes. The heuristics that result from these formulations have been tested on some of the Second DIMACS Implementation Challenge benchmark graphs, and have been found to be competitive when compared to the several other heuristics that have also been tested on those graphs.Comment: To appear in Journal of Combinatorial Optimizatio

    Modeling the input history of programs for improved instruction-memory performance

    Full text link
    When a program is loaded into memory for execution, the relative position of its basic blocks is crucial, since loading basic blocks that are unlikely to be executed first places them high in the instruction-memory hierarchy only to be dislodged as the execution goes on. In this paper we study the use of Bayesian networks as models of the input history of a program. The main point is the creation of a probabilistic model that persists as the program is run on different inputs and at each new input refines its own parameters in order to reflect the program's input history more accurately. As the model is thus tuned, it causes basic blocks to be reordered so that, upon arrival of the next input for execution, loading the basic blocks into memory automatically takes into account the input history of the program. We report on extensive experiments, whose results demonstrate the efficacy of the overall approach in progressively lowering the execution times of a program on identical inputs placed randomly in a sequence of varied inputs. We provide results on selected SPEC CINT2000 programs and also evaluate our approach as compared to the gcc level-3 optimization and to Pettis-Hansen reordering
    • …
    corecore