19,871 research outputs found
Analysis of the transient behavior of rubbing components
Finite element equations are developed for studying deformations and temperatures resulting from frictional heating in sliding system. The formulation is done for linear steady state motion in two dimensions. The equations include the effect of the velocity on the moving components. This gives spurious oscillations in their solutions by Galerkin finite element methods. A method called streamline upwind scheme is used to try to deal with this deficiency. The finite element program is then used to investigate the friction of heating in gas path seal
Elastic-plastic defect interaction in (a)symmetrical double edge notched tension specimens
Interaction of defects tends to intensify their crack driving force response compared to the situation where these defects act independently. The interaction between multiple defects is addressed in engineering critical assessment standards like BS7910 and ASME B&PV Section XI. Nonetheless, the accuracy of these rules is open to debate since all of them are based on re-characterization procedures which in essence introduce conservativeness. The authors have developed a fully parametric finite element (FE) model able to generate multiple notches in different topologies, in order to investigate their interaction effect. An experimental validation study is conducted to verify the FE model in terms of CTOD response and surface strain distribution. To that end, symmetrically and asymmetrically double edge notched tension specimens are tensile tested and their deformation monitored by means of 3D digital image correlation. In this study the CTOD is opted as a local criterion to evaluate the interaction between notches. These results are compared with an evaluation of strain patterns on a specimen’s surface, as a global interaction evaluation. Through this comparison a deeper understanding is gained to allow us to develop a novel approach to address flaw interaction. Moreover, the validation of the FE model allows future studies of interaction between other defect types (e.g., semi-elliptical, surface breaking) in plate-like geometries
Analytical Formulation of the Jacobian Matrix for Non-linear Calculation of the Forced Response of Turbine Blade Assemblies with Wedge Friction Dampers
A fundamental issue in turbomachinery design is the dynamical stress assessment of turbine blades. In order to reduce stress peaks in the turbine blades at engine orders corresponding to blade natural frequencies, friction dampers are employed. Blade response calculation requires the solution of a set of non-linear equations originated by the introduction of friction damping. Such a set of non-linear equations is solved using the iterative numerical Newton-Raphson method. However, calculation of the Jacobian matrix of the system using classical numerical finite difference schemes makes frequency domain solver prohibitively expensive for structures with many contact points. Large computation time results from the evaluation of partial derivatives of the non-linear equations with respect to the displacements. In this work a methodology to compute efficiently the Jacobian matrix of a dynamic system having wedge dampers is presented. It is exact and completely analytical. The proposed methods have been successfully applied to a real intermediate pressure turbine (IPT) blade under cyclic symmetry boundary conditions with underplatform wedge dampers. Its implementation showed to be very effective, and allowed to achieve relevant time savings without loss of precision
A pressurized cylindrical shell with a fixed end which contains an axial part-through or through crack
A cylindrical shell having a very stiff and plate or a flange is considered. It is assumed that near the end the cylinder contains an axial flaw which may be modeled as a part through surface crack or a through crack. The effect of the end constraining on the stress intensity factor which is the main fracture mechanics parameter is studied. The applied loads acting on the cylinder are assumed to be axisymmetric. Thus the crack problem under consideration is symmetric with respect to the plane of the crack and consequently only the Mode 1 stress intensity factors are nonzero. With this limitation, the general perturbation problem for a cylinder with a built in end containing an axial crack is considered. Reissner's shell theory is used to formulate the problem. The part through crack problem is treated by using a line spring model. In the case of a crack tip terminating at the fixed end it is shown that the integral equations of the shell problem has the same generalized Cauchy kernel as the corresponding plane stress elasticity problem
Maps of random walks on complex networks reveal community structure
To comprehend the multipartite organization of large-scale biological and
social systems, we introduce a new information theoretic approach that reveals
community structure in weighted and directed networks. The method decomposes a
network into modules by optimally compressing a description of information
flows on the network. The result is a map that both simplifies and highlights
the regularities in the structure and their relationships. We illustrate the
method by making a map of scientific communication as captured in the citation
patterns of more than 6000 journals. We discover a multicentric organization
with fields that vary dramatically in size and degree of integration into the
network of science. Along the backbone of the network -- including physics,
chemistry, molecular biology, and medicine -- information flows
bidirectionally, but the map reveals a directional pattern of citation from the
applied fields to the basic sciences.Comment: 7 pages and 4 figures plus supporting material. For associated source
code, see http://www.tp.umu.se/~rosvall
Analysis of coil slumping
Steel strip is usually stored as a coil, which will slump to some degree after the removal of the mandrel. More often than not, the amount of slumping is so minor that it is assumed not to have occurred. Occasionally, the amount, though minor, is sufficient to compromise the integrity of the cylindrical bore which compromises subsequent handling of the coil. In extreme situations, the slumping progresses to a complete collapse of the coil. Such a collapse is rare. It occurs when a coil cannot hold up its own mass and loses its circular cross-section. It is thought to be principally associated with the size and weight of the coil, inappropriate coiling tensions and/or poor re-coiler equipment design. Strip properties, especially inter-strip contact characteristics, have been demonstrated experimentally to be crucial determinants of whether or not coil collapse is likely to occur.
The particular kind of slumping/collapse of interest to BlueScope Steel, who proposed this Study Group problem, is the minor slumping that compromises cylindrical bore integrity. It is referred to as coil slump.
The Study Group was asked to investigate and model the phenomenon of coil slumping, and, if possible, to quantify the effect of critical parameters, especially coil mass, strip thickness and inter-strip friction. In particular, it was suggested that deliberations should aim to characterize the geometry of slumping and to predict the deformation profile at the innermost and outermost wraps.
For BlueScope Steel, the long term objectives are:
(1) the formulation of the governing equations for the stresses in a coil under self-weight,
(2) the identification of analytical solutions and/or numerical schemes for the final coil shape after slumping, and
(3) the formulation of exclusion rules-of-thumb which predict when a particular form of slump (oval or triangular) is likely to occur.
The Study Group made some progress with (1), limited progress with (2) and most progress with (3). Though various computer programs were written to explore different force and energy balance scenarios, they only scratched the surface with regards to (2). Success with it is heavily dependent in substantial progress being made with (1). As explained in detail in the sequel, the Study Group’s deliberations resulted in an improved understanding of the coil slumping/collapse problem by identifying a number of specific issues that should be of direct assistance to BlueScope Steel’s future management of coil slumping/collapse.
In particular, such issues included the need, from a modelling perspective, to draw a clear distinction between minor slumping and major slumping which can subsequently lead to collapse; the formulation of a heuristic hypothesis about the dynamics of coil slumping/collapse which can be compared with historical data and act act as a conceptualization guide for further investigations; the identification of a “tension-weight ratio” (R) as the relevant dimensionless group which represents an indicative rule-of-thumb which can be applied in practice; and proposed, on the basis of the hypothesis, an efficient procedure for recording collapse events and statistically identifying possible collapse situations
- …