8 research outputs found

    Development and validation of a model to estimate postharvest losses during transport of tomatoes in West Africa

    No full text
    In an effort to better understand postharvest losses associated with low-cost tomato transport in West Africa we present a spatial–temporal simulation model that links the prevailing outside weather conditions, estimated using satellite meteorology, to the microclimate observed inside truck trailers (cryptoclimate) to determine the deterioration in tomato quality during transport. Tomatoes from Burkina Faso are transported under sub-optimal circumstances to important Ghanaian markets; during a number of these transports conditions for the tomato cargo inside trucks were measured while conditions outside the trucks were monitored by means of weather satellites. The presented tomato quality model analytically combines cryptoclimate, duration since harvest, and kinetic modelling to arrive at estimated firmness. Firmness of tomatoes in transport was monitored with a portable penetrometer in selected trucks, augmented with additional (acoustic firmness) data collected in a climate chamber. Half of these observations were used to calibrate a firmness loss model and the other half to validate the simulation results. Our results indicate that outside weather during transport can be reasonably well estimated using satellite meteorology. The model performance for the estimation of outside global radiation (Rg) and land-surface temperature (LST) were found to be satisfactory, with a RMSE = 87.98 W m-2; bias = 57.39 W m-2 and RMSE = 2.95 °C; bias = 0.91 °C, respectively. Results for the cryptoclimate estimation (conditions inside the trucks) for temperature, relative humidity, and light intensity were as follows: R2 = 0.77, RMSE = 4.18 °C (Tincargo); R2 = 0.84, RMSE = 19.59% (RHincargo); and R2 = 0.9, RMSE = 137.31 lx (LIincargo). The postharvest loss model that relies on these estimates as its input explained on average 77% of the variance in observed tomatoes firmness, with total product losses ranging from 30% to 50% when integrated over the entire transportation period. With the accuracy of the model quantified and the causality of losses partially demonstrated, we argue that the simulation model can be useful as an economic resistor in transport optimization studies to investigate the cost–benefit of various measures to reduce postharvest losses. Such studies could help to illustrate what net gains can be expected if delays along the transportation route are reduced, cargo conditions are semi-controlled (e.g. pre-cooling treatment), or if a different transport schedule is adopted. The model may also be used to show the impact of different climate change scenarios on postharvest losses

    Crystallographic Determination of Three Ni-a-Hydroxyoxime-Carboxylic Acid Synergist Complexes

    No full text
    X-ray crystal structures of three dicarboxylato-bis-a-hydroxyoximenickel(II) complexes have been obtained. These contain a short chained (C8) analogue of LIX®63 hydroxyoxime, along with either benzoate, isobutyrate or propionate. All have pseudo-octahedral structures with monodentate carboxylate anions located cis to one another and neutral, chelating a-hydroxyoxime ligands. Intra-molecular hydrogen bonding between each anionic acid's carboxylate group and an adjacent oxime hydroxyl group is evident. Inter-molecular hydrogen bonding is also observed. These provide the first definitive structural elucidation of the types of nickel complexes that could be formed during synergistic extraction by LIX®63 and carboxylic acids

    The aqueous processing of minerals and materials

    No full text
    corecore