56 research outputs found

    Paracrine cyclooxygenase-2 activity by macrophages drives colorectal adenoma progression in the Apc Min/+ mouse model of intestinal tumorigenesis

    Get PDF
    Genetic deletion or pharmacological inhibition of cyclooxygenase (COX)-2 abrogates intestinal adenoma development at early stages of colorectal carcinogenesis. COX-2 is localised to stromal cells (predominantly macrophages) in human and mouse intestinal adenomas. Therefore, we tested the hypothesis that paracrine Cox-2-mediated signalling from macrophages drives adenoma growth and progression in vivo in the ApcMin/+ mouse model of intestinal tumorigenesis. Using a transgenic C57Bl/6 mouse model of Cox-2 over-expression driven by the chicken lysozyme locus (cLys-Cox-2), which directs integration site-independent, copy number-dependent transgene expression restricted to macrophages, we demonstrated that stromal macrophage Cox-2 in colorectal (but not small intestinal) adenomas from cLys-Cox-2 x ApcMin/+ mice was associated with significantly increased tumour size (P = 0.025) and multiplicity (P = 0.025), compared with control ApcMin/+ mice. Transgenic macrophage Cox-2 expression was associated with increased dysplasia, epithelial cell Cox-2 expression and submucosal tumour invasion, as well as increased nuclear β-catenin translocation in dysplastic epithelial cells. In vitro studies confirmed that paracrine macrophage Cox-2 signalling drives catenin-related transcription in intestinal epithelial cells. Paracrine macrophage Cox-2 activity drives growth and progression of ApcMin/+ mouse colonic adenomas, linked to increased epithelial cell β-catenin dysregulation. Stromal cell (macrophage) gene regulation and signalling represent valid targets for chemoprevention of colorectal cancer

    Canine models of copper toxicosis for understanding mammalian copper metabolism

    Get PDF
    Hereditary forms of copper toxicosis exist in man and dogs. In man, Wilson’s disease is the best studied disorder of copper overload, resulting from mutations in the gene coding for the copper transporter ATP7B. Forms of copper toxicosis for which no causal gene is known yet are recognized as well, often in young children. Although advances have been made in unraveling the genetic background of disorders of copper metabolism in man, many questions regarding disease mechanisms and copper homeostasis remain unanswered. Genetic studies in the Bedlington terrier, a dog breed affected with copper toxicosis, identified COMMD1, a gene that was previously unknown to be involved in copper metabolism. Besides the Bedlington terrier, a number of other dog breeds suffer from hereditary copper toxicosis and show similar phenotypes to humans with copper storage disorders. Unlike the heterogeneity of most human populations, the genetic structure within a purebred dog population is homogeneous, which is advantageous for unraveling the molecular genetics of complex diseases. This article reviews the work that has been done on the Bedlington terrier, summarizes what was learned from studies into COMMD1 function, describes hereditary copper toxicosis phenotypes in other dog breeds, and discusses the opportunities for genome-wide association studies on copper toxicosis in the dog to contribute to the understanding of mammalian copper metabolism and copper metabolism disorders in man

    Gravitational Wave Detection by Interferometry (Ground and Space)

    Get PDF
    Significant progress has been made in recent years on the development of gravitational wave detectors. Sources such as coalescing compact binary systems, neutron stars in low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free craft in space. The main theme of this review is a discussion of the mechanical and optical principles used in the various long baseline systems in operation around the world - LIGO (USA), Virgo (Italy/France), TAMA300 and LCGT (Japan), and GEO600 (Germany/U.K.) - and in LISA, a proposed space-borne interferometer. A review of recent science runs from the current generation of ground-based detectors will be discussed, in addition to highlighting the astrophysical results gained thus far. Looking to the future, the major upgrades to LIGO (Advanced LIGO), Virgo (Advanced Virgo), LCGT and GEO600 (GEO-HF) will be completed over the coming years, which will create a network of detectors with significantly improved sensitivity required to detect gravitational waves. Beyond this, the concept and design of possible future "third generation" gravitational wave detectors, such as the Einstein Telescope (ET), will be discussed.Comment: Published in Living Reviews in Relativit

    Protein lipid interaction in bile: Effects of biliary proteins on the stability of cholesterol-lecithin vesicles

    No full text
    The nucleation of cholesterol crystals is an obligatory precursor to cholesterol gallstone formation. Nucleation, in turn, is believed to be preceded by aggregation and fusion of cholesterol-rich vesicles. We have investigated the effects of two putative pro-nucleating proteins, a concanavalin A-binding protein fraction and a calcium-binding protein, on the stability of sonicated small unilamellar cholesterol-lecithin vesicles. Vesicle aggregation is followed by monitoring absorbance, and upon addition of the concanavalin A-binding protein fraction the absorbance of a vesicle dispersion increases continuously with time. Vesicle fusion is probed by a fluorescence contents-mixing assay. Vesicles apparently fuse slowly after the addition of the concanavalin A-binding protein, although inner filter effects confound the quantitative measurement of fusion rates. The rates of change of absorbance and fluorescence increase with the concentration of the protein, and the second-order dimerization rate constant increases with both the protein concentration and the cholesterol content of the vesicles. On the other hand, the calcium-binding protein has no effect on the stability of the vesicle dispersion. This protein may therefore affect cholesterol crystal formation not by promoting the nucleation process, but by enhancing crystal growth and packaging. Our results demonstrate that biliary proteins can destabilize lipid vesicles and that different proteins play different roles in the mechanism of cholesterol gallstone formation.link_to_subscribed_fulltex

    Phospholipase C-induced aggregation and fusion of cholesterol-lecithin small unilamellar vesicles

    No full text
    We have investigated the effects of the Ca2+-requiring enzyme phospholipase C on the stability of sonicated vesicles made with different molar ratios of cholesterol to lecithin. Vesicle aggregation is detected by following turbidity with time. Upon the addition of phospholipase C and after a short lag period, the turbidity of a vesicle dispersion increases continuously with time. The rate of increase of turbidity increases with both the enzyme-to-vesicle ratio and the cholesterol content of the vesicles. Vesicle fusion and leakage of contents are monitored by a contents-mixing fusion assay using 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS) and p-xylylenebis(pyridinium bromide) (DPX) as the fluorescence probes [Ellens, H., Bentz, J., & Szoka, F. C. (1985) Biochemistry 24, 3099-3106]. The results clearly show that phospholipase C induces vesicle fusion. The rate of vesicle fusion correlates with the enzyme-to-vesicle ratio but not with the cholesterol content of the membrane. Negligible aggregation and fusion of vesicles occurs when the experiment is repeated with buffer free of Ca2+. The membrane-destabilizing diacylglycerol, a product of lecithin hydrolysis by phospholipase C, is speculated to play a major role in driving the observed vesicle aggregation and fusion. The kinetics of vesicle aggregation and vesicle fusion can be predicted by linking Michaelis-Menten enzyme kinetics to a mass-action model. © 1993 American Chemical Society.link_to_subscribed_fulltex

    Structural mechanisms of bile salt-induced growth of small unilamellar cholesterol-lecithin vesicles

    No full text
    The liver secretes cholesterol and lecithin in the form of mixed vesicles during the formation of bile. When exposed to bile salts, these metastable vesicles undergo various structural rearrangements. We have examined the effects of three different bile salts, taurocholate (TC), tauroursodeoxycholate (TUDC), and taurodeoxycholate [TDC), on the stability of sonicated lecithin vesicles containing various amounts of cholesterol. Vesicle growth was probed by turbidity measurements, quasi-elastic light scattering, and a resonance energy transfer lipid-mixing assay. Leakage of internal contents was monitored by encapsulation of fluorescence probes in vesicles. At low bile salt-to-lecithin ratios (TC/L or TUDC/L 5), pure lecithin vesicles are solubilized into mixed micelles with a concomitant decrease in the overall particle size. In this regime, extensive leakage and lipid mixing occur instantaneously after exposure to bile salt. At intermediate BS/L (I < TC/L or TUDC/L < 5), vesicles grow with time, and the rates of both leakage and lipid mixing are rapid. The data suggest that vesicles grow by the transfer of lecithin and cholesterol via diffusion in the aqueous medium. The addition of cholesterol to lecithin vesicles reduces leakage dramatically and increases the amount of BS required for complete solubilization of vesicles. The more hydrophobic TDC induces vesicle growth at a lower BS/L than does TC or TUDC. These results demonstrate the physiologic forms of lipid microstructures during bile formation and explain how the hydrophilic-hydrophobic balance of BS mixtures may profoundly affect the early stages of CH gallstone formation.link_to_subscribed_fulltex
    corecore